人工智能算法工程师(中级)课程1-Opencv视觉处理之基本操作

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程1-Opencv视觉处理之基本操作。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它提供了各种视觉处理函数,并支持多种编程语言,如C++、Python、Java等。OpenCV具有跨平台性,可以在不同的操作系统上运行。它广泛应用于图像处理、视频分析、物体识别、人脸识别、动作识别等领域。

文章目录

  • 一、Opencv的基本操作
    • 1. 图像读取和保存
    • 2. 视频读取和保存
    • 3. 图像通道操作
    • 4. 图像色彩空间
    • 5. 图像阈值操作
    • 6. 图像掩码操作
    • 7. 图像混合操作
    • 8. 图像插值算法

一、Opencv的基本操作

1. 图像读取和保存

读取图像使用cv2.imread(),保存图像使用cv2.imwrite()
我们准备一张图片,例如这张:
在这里插入图片描述

将其命名为image.jpg,然后运行以下代码:

import cv2
# 读取图像
image = cv2.imread('image.jpg')
# 保存图像
cv2.imwrite('new_image.jpg', image)

2. 视频读取和保存

读取视频使用cv2.VideoCapture(),保存视频使用cv2.VideoWriter()

import cv2
# 读取视频
cap = cv2.VideoCapture('video.mp4')
# 定义视频保存的格式
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))
while cap.isOpened():ret, frame = cap.read()if ret:# 写入视频帧out.write(frame)# 显示视频帧cv2.imshow('frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:break
# 释放所有资源
cap.release()
out.release()
cv2.destroyAllWindows()

3. 图像通道操作

在OpenCV中,BGR图像的三个通道可以分别访问和操作。

import cv2
import numpy as np
image = cv2.imread('image.jpg')
# 分离通道
b, g, r = cv2.split(image)
# 合并通道
merged = cv2.merge([b, g, r])
# 显示蓝色通道
cv2.imshow('Blue channel', b)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. 图像色彩空间

OpenCV支持多种色彩空间转换,常用的有BGR到灰度图、BGR到HSV等。

import cv2
image = cv2.imread('image.jpg')
# 转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 转换为HSV色彩空间
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

5. 图像阈值操作

阈值操作可以将图像转换为二值图像。

import cv2
import numpy as np
image = cv2.imread('image.jpg', 0)
# 应用固定阈值操作
_, thresh1 = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Binary image', thresh1)
cv2.waitKey(0)
cv2.destroyAllWindows()

6. 图像掩码操作

掩码操作允许您选择图像的特定区域进行操作。

import cv2
import numpy as np
image = cv2.imread('image.jpg')
# 创建掩码
mask = np.zeros(image.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
# 应用掩码
masked_image = cv2.bitwise_and(image, image, mask=mask)
cv2.imshow('Masked image', masked_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

7. 图像混合操作

图像混合是将两幅图像按照一定的比例合并。

import cv2
import numpy as np
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
# 图像混合
blended = cv2.addWeighted(image1, 0.7, image2, 0.3, 0)
cv2.imshow('Blended image', blended)
cv2.waitKey(0)
cv2.destroyAllWindows()

8. 图像插值算法

插值算法在图像缩放时使用,常见的有最近邻插值、双线性插值、双三次插值等。

import cv2
image = cv2.imread('image.jpg')
# 图像缩放,使用双线性插值
resized_image = cv2.resize(image, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)
cv2.imshow('Resized image', resized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上代码示例展示了如何使用OpenCV进行基本的图像和视频处理任务。这些操作是计算机视觉应用的基础,可以用于更复杂的应用,如物体检测、人脸识别等。
大家请注意:我们要确保替换image.jpgvideo.mp4image1.jpgimage2.jpg为大家的实际文件名。同时,确保安装.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/43387.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红酒与电影经典:那些银幕上的醉人瞬间

在光影交织的银幕世界里,红酒不仅是品味生活的象征,更是情感与故事的催化剂。每当夜幕降临,一杯色泽深邃的红酒,便能带我们走进那些令人陶醉的影片瞬间,感受不同的人生百态。今天,就让我们一起回味那些银幕…

告别付费 API!使用 Ollama 和 MATLAB 玩转本地大模型

在“当MATLAB遇见ChatGPT?”一文中介绍了名为MatGPT的插件,该插件通过调用ChatGPT的API,实现了在MATLAB中与Chat GPT对话的功能。 虽然Open AI的GPT3.5和GPT4o可以免费使用,但调用API却需要收费,因此使用MatGPT这类插件…

mybatis 延迟加载

MyBatis的延迟加载(Lazy Loading)是一种优化技术,用于在需要时才加载关联对象或集合,从而提高性能和效率。以下是对MyBatis延迟加载的详细介绍: 延迟加载的基本概念 延迟加载是指在第一次访问对象的属性时才加载该对象…

阿一课代表随堂分享:红队反向代理之使用frp搭建反向代理

frp反向代理 frp简介 frp 是一个开源、简洁易用、高性能的内网穿透和反向代理软件,支持 tcp, udp, http, https等协议。 frp 是一个可用于内网穿透的高性能的反向代理应用,分为服务端frps和客户端frpc,支持 tcp, udp, http, https 协议。详…

修改服务器挂载目录

由于我们的项目通常需要挂载一个大容量的数据盘来存储文件数据,所以我们每台服务器都需要一个默认的挂载目录来存放这些数据,但是由于我们的误操作,导致挂载目录名字建错了,这时候后端就读不到挂载目录了,那我们我们的…

竟能让函数只执行一次?分享 1 段优质 JS 代码片段!

本内容首发于工粽号:程序员大澈,每日分享一段优质代码片段,欢迎关注和投稿! 大家好,我是大澈! 本文约 700 字,整篇阅读约需 1 分钟。 今天分享一段优质 JS 代码片段,确保某函数在某…

Java面经知识点汇总版

Java面经知识点汇总版 算法 14. 最长公共前缀(写出来即可) Java 计算机基础 数据库 基础 SQL SELECT first_name, last_name, salary FROM employees WHERE department Sales AND salary > (SELECT AVG(salary)FROM employeesWHERE department Sal…

德语中含“Augen”的惯用语表达-柯桥小语种学习德语考级

在我们的德语学习过程中,除了词汇的记忆,另一项重要的记忆任务就是惯用语的背诵啦。要知道,德语中有大量的Redewendung,他们以其言简意赅的表达,在日常用语中备受青睐。上一期我们已经学习了部分含有“Hand”的惯用语&…

小抄 20240707 晚熟

01 在抖音快手微博小红书,搜“晚熟的人”,你会看到上百种晚熟的表现,而且写出这些表现的博主,还都会说摘自莫言《晚熟的人》。 “不是我说的,是莫言说的,我说的可能有假,莫言说的还能有假吗&am…

神经网络习题

不具有权重共享的网络是: **多层感知机(Multilayer Perceptron,MLP): ** 特点:每一层的每一个神经元都与上一层的每一个神经元全连接,权重独立于每个连接,不存在权重共享。 权重共享…

Unicode 与 UTF-8 的区别与联系

文章目录 UnicodeUTF-8联系区别Unicode 转义序列字符编码与字符的对应规则例子 Unicode 定义:Unicode 是一个字符编码标准,旨在为世界上所有的字符分配一个唯一的编码。 编码范围:Unicode 的编码范围从 0x0000 到 0x10FFFF,能够表…

算法·高精度

高精度算法 分为四则运算加减乘除 适用条件 都高精度了,肯定时long long都会爆的情况——一般与阶乘有关 注意事项 用数组模拟位运算,最后在一起考虑进位 注意res[i1]res[i]/10; 是""不是 两数相加,相乘数组的新长度会变&…

去中心化时代的到来:区块链如何重新定义权力和控制

随着区块链技术的迅猛发展,我们正逐步进入一个去中心化的新时代。区块链不仅仅是一种技术,更是一种理念,它通过去除中心化的权威和控制节点,重新定义了数据管理、交易验证和权力分配的方式。本文将深入探讨区块链如何在去中心化时…

成都欣丰洪泰文化传媒有限公司电商服务领航者

在当今数字化浪潮中,电商行业正以前所未有的速度蓬勃发展。作为这片蓝海中的佼佼者,成都欣丰洪泰文化传媒有限公司凭借其专业的电商服务能力和对市场的敏锐洞察力,成为众多品牌信赖的合作伙伴。今天,就让我们一起走进成都欣丰洪泰…

CC5利用链分析

分析版本 Commons Collections 3.2.1 JDK 8u65 环境配置参考JAVA安全初探(三):CC1链全分析 分析过程 CC6是在CC1 LazyMap利用链(引用)的基础上。 CC5和CC6相似都是CC1 LazyMap利用链(引用)的基础上,改变了到LazyMap的入口类。 CC6是用TiedMapEntry的hashCode方…

Pinia 实战指南:轻松驾驭前端状态管理

前言 本文讲解一下在前端开发中经常使用的一个状态管理工具Pinia Pinia 是 Vue 的专属状态管理库,很值得我们深入去学习一下 Pinia是什么? Pinia是专门为Vue.js应用程序设计的一个状态管理库 主要特点: 简单性: Pinia的设计目标是提高开发效率和用户体验,因此…

gen_circle_contour_xld 创建XLD轮廓对应于圆或圆弧。

gen_circle_contour_xld (Operator)创建XLD轮廓对应于圆或圆弧。 Signature 签名 gen_circle_contour_xld( : ContCircle : Row, Column, Radius, StartPhi, EndPhi, PointOrder, Resolution : ) Description 描述 Gen_circle_contour_xld创建一个或多个圆弧或闭合的圆。圆…

MySQL 的 Buffer Pool 的结构及有什么作用

MySQL 的 Buffer Pool 是 InnoDB 存储引擎中的一个关键组件,负责管理数据库缓存,以提高数据读取和写入的性能。它通过将磁盘上的数据页缓存到内存中,使得数据库可以更快地访问频繁使用的数据,从而降低磁盘 I/O 操作。下面是 MySQL…

全志A527 T527 android13支持usb摄像头

1.前言 我们发现usb摄像头在A527 android13上面并不能正常使用,需要支持相关的摄像头。 2.系统节点查看 我们查看系统是否有相关的节点生成,发现/dev/video相关的节点已经生成了。并没有问题,拔插正常。 3.这里我们需要查看系统层是否支持相关的相机, 我们使用命令进行…

pyqt5图片分辨率导致的界面过大的问题

项目场景:pyqt5的图片分辨率和屏幕分辨率问题 提示:这里简述项目相关背景:图片分辨率:500*500;显示屏分辨率:600;导致界面显示不全; 在其他高分辨率显示屏中没有这个问题。 问题描述…