【mindspore进阶】02-ResNet50迁移学习

Mindspore 应用(2)ResNet50迁移学习

在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。

迁移学习详细内容见Stanford University CS231n。

数据准备

下载数据集

下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。

def say_hi(name: str) -> str:return f'Hi {name}'greeting = say_hi(123)
print(greeting)
Hi 123
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 
from download import downloaddataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)
Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip (11.3 MB)file_sizes: 100%|██████████████████████████| 11.9M/11.9M [00:00<00:00, 92.3MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./datasets-Canidae'./datasets-Canidae'

数据集的目录结构如下:

datasets-Canidae/data/
└── Canidae├── train│   ├── dogs│   └── wolves└── val├── dogs└── wolves

加载数据集

狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作。

首先执行过程定义一些输入:

batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 50                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"# 创建训练数据集def create_dataset_canidae(dataset_path, usage):"""数据加载"""data_set = ds.ImageFolderDataset(dataset_path,num_parallel_workers=workers,shuffle=True,)# 数据增强操作mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]std = [0.229 * 255, 0.224 * 255, 0.225 * 255]scale = 32if usage == "train":# Define map operations for training datasettrans = [vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),vision.RandomHorizontalFlip(prob=0.5),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]else:# Define map operations for inference datasettrans = [vision.Decode(),vision.Resize(image_size + scale),vision.CenterCrop(image_size),vision.Normalize(mean=mean, std=std),vision.HWC2CHW()]# 数据映射操作data_set = data_set.map(operations=trans,input_columns='image',num_parallel_workers=workers)# 批量操作data_set = data_set.batch(batch_size)return data_setdataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

数据集可视化

mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]print("Tensor of image", images.shape)
print("Labels:", labels)
Tensor of image (18, 3, 224, 224)
Labels: [0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1]

对获取到的图像及标签数据进行可视化,标题为图像对应的label名称。

import matplotlib.pyplot as plt
import numpy as np# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}plt.figure(figsize=(5, 5))
for i in range(4):# 获取图像及其对应的labeldata_image = images[i].asnumpy()data_label = labels[i]# 处理图像供展示使用data_image = np.transpose(data_image, (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])data_image = std * data_image + meandata_image = np.clip(data_image, 0, 1)# 显示图像plt.subplot(2, 2, i+1)plt.imshow(data_image)plt.title(class_name[int(labels[i].asnumpy())])plt.axis("off")plt.show()

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

训练模型

本章使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。

构建Resnet50网络

from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normalweight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)
class ResidualBlockBase(nn.Cell):expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等def __init__(self, in_channel: int, out_channel: int,stride: int = 1, norm: Optional[nn.Cell] = None,down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlockBase, self).__init__()if not norm:self.norm = nn.BatchNorm2d(out_channel)else:self.norm = normself.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.conv2 = nn.Conv2d(in_channel, out_channel,kernel_size=3, weight_init=weight_init)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):"""ResidualBlockBase construct."""identity = x  # shortcuts分支out = self.conv1(x)  # 主分支第一层:3*3卷积层out = self.norm(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out
class ResidualBlock(nn.Cell):expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍def __init__(self, in_channel: int, out_channel: int,stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channel, out_channel,kernel_size=1, weight_init=weight_init)self.norm1 = nn.BatchNorm2d(out_channel)self.conv2 = nn.Conv2d(out_channel, out_channel,kernel_size=3, stride=stride,weight_init=weight_init)self.norm2 = nn.BatchNorm2d(out_channel)self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,kernel_size=1, weight_init=weight_init)self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)self.relu = nn.ReLU()self.down_sample = down_sampledef construct(self, x):identity = x  # shortscuts分支out = self.conv1(x)  # 主分支第一层:1*1卷积层out = self.norm1(out)out = self.relu(out)out = self.conv2(out)  # 主分支第二层:3*3卷积层out = self.norm2(out)out = self.relu(out)out = self.conv3(out)  # 主分支第三层:1*1卷积层out = self.norm3(out)if self.down_sample is not None:identity = self.down_sample(x)out += identity  # 输出为主分支与shortcuts之和out = self.relu(out)return out
def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],channel: int, block_nums: int, stride: int = 1):down_sample = None  # shortcuts分支if stride != 1 or last_out_channel != channel * block.expansion:down_sample = nn.SequentialCell([nn.Conv2d(last_out_channel, channel * block.expansion,kernel_size=1, stride=stride, weight_init=weight_init),nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)])layers = []layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))in_channel = channel * block.expansion# 堆叠残差网络for _ in range(1, block_nums):layers.append(block(in_channel, channel))return nn.SequentialCell(layers)
from mindspore import load_checkpoint, load_param_into_netclass ResNet(nn.Cell):def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],layer_nums: List[int], num_classes: int, input_channel: int) -> None:super(ResNet, self).__init__()self.relu = nn.ReLU()# 第一个卷积层,输入channel为3(彩色图像),输出channel为64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)self.norm = nn.BatchNorm2d(64)# 最大池化层,缩小图片的尺寸self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')# 各个残差网络结构块定义,self.layer1 = make_layer(64, block, 64, layer_nums[0])self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)# 平均池化层self.avg_pool = nn.AvgPool2d()# flattern层self.flatten = nn.Flatten()# 全连接层self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)def construct(self, x):x = self.conv1(x)x = self.norm(x)x = self.relu(x)x = self.max_pool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avg_pool(x)x = self.flatten(x)x = self.fc(x)return xdef _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,input_channel: int):model = ResNet(block, layers, num_classes, input_channel)if pretrained:# 加载预训练模型download(url=model_url, path=pretrianed_ckpt, replace=True)param_dict = load_checkpoint(pretrianed_ckpt)load_param_into_net(model, param_dict)return modeldef resnet50(num_classes: int = 1000, pretrained: bool = False):"ResNet50模型"resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,pretrained, resnet50_ckpt, 2048)

固定特征进行训练

使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False 冻结参数,以便不在反向传播中计算梯度。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import timenet_work = resnet50(pretrained=True)# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():if param.name not in ["fc.weight", "fc.bias"]:param.requires_grad = False# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')def forward_fn(inputs, targets):logits = net_work(inputs)loss = loss_fn(logits, targets)return lossgrad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)def train_step(inputs, targets):loss, grads = grad_fn(inputs, targets)opt(grads)return loss# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt (97.7 MB)file_sizes: 100%|█████████████████████████████| 102M/102M [00:00<00:00, 137MB/s]
Successfully downloaded file to ./LoadPretrainedModel/resnet50_224_new.ckpt
训练和评估

开始训练模型,与没有预训练模型相比,将节约一大半时间,因为此时可以不用计算部分梯度。保存评估精度最高的ckpt文件于当前路径的./BestCheckpoint/resnet50-best-freezing-param.ckpt。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()num_epochs = 5# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"
import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
# 开始循环训练
print("Start Training Loop ...")best_acc = 0for epoch in range(num_epochs):losses = []net_work.set_train()epoch_start = time.time()# 为每轮训练读入数据for i, (images, labels) in enumerate(data_loader_train):labels = labels.astype(ms.int32)loss = train_step(images, labels)losses.append(loss)# 每个epoch结束后,验证准确率acc = model1.eval(dataset_val)['Accuracy']epoch_end = time.time()epoch_seconds = (epoch_end - epoch_start) * 1000step_seconds = epoch_seconds/step_size_trainprint("-" * 20)print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (epoch+1, num_epochs, sum(losses)/len(losses), acc))print("epoch time: %5.3f ms, per step time: %5.3f ms" % (epoch_seconds, step_seconds))if acc > best_acc:best_acc = accif not os.path.exists(best_ckpt_dir):os.mkdir(best_ckpt_dir)ms.save_checkpoint(net_work, best_ckpt_path)print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "f"save the best ckpt file in {best_ckpt_path}", flush=True)
Start Training Loop ...
--------------------
Epoch: [  1/  5], Average Train Loss: [0.667], Accuracy: [0.583]
epoch time: 175554.276 ms, per step time: 12539.591 ms
--------------------
Epoch: [  2/  5], Average Train Loss: [0.572], Accuracy: [0.817]
epoch time: 1043.899 ms, per step time: 74.564 ms
--------------------
Epoch: [  3/  5], Average Train Loss: [0.506], Accuracy: [0.983]
epoch time: 849.647 ms, per step time: 60.689 ms
--------------------
Epoch: [  4/  5], Average Train Loss: [0.439], Accuracy: [0.983]
epoch time: 885.925 ms, per step time: 63.280 ms
--------------------
Epoch: [  5/  5], Average Train Loss: [0.418], Accuracy: [0.983]
epoch time: 1015.336 ms, per step time: 72.524 ms
================================================================================
End of validation the best Accuracy is:  0.983, save the best ckpt file in ./BestCheckpoint/resnet50-best-freezing-param.ckpt
可视化模型预测

使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。

import matplotlib.pyplot as plt
import mindspore as msdef visualize_model(best_ckpt_path, val_ds):net = resnet50()# 全连接层输入层的大小in_channels = net.fc.in_channels# 输出通道数大小为狼狗分类数2head = nn.Dense(in_channels, 2)# 重置全连接层net.fc = head# 平均池化层kernel size为7avg_pool = nn.AvgPool2d(kernel_size=7)# 重置平均池化层net.avg_pool = avg_pool# 加载模型参数param_dict = ms.load_checkpoint(best_ckpt_path)ms.load_param_into_net(net, param_dict)model = train.Model(net)# 加载验证集的数据进行验证data = next(val_ds.create_dict_iterator())images = data["image"].asnumpy()labels = data["label"].asnumpy()class_name = {0: "dogs", 1: "wolves"}# 预测图像类别output = model.predict(ms.Tensor(data['image']))pred = np.argmax(output.asnumpy(), axis=1)# 显示图像及图像的预测值plt.figure(figsize=(5, 5))for i in range(4):plt.subplot(2, 2, i + 1)# 若预测正确,显示为蓝色;若预测错误,显示为红色color = 'blue' if pred[i] == labels[i] else 'red'plt.title('predict:{}'.format(class_name[pred[i]]), color=color)picture_show = np.transpose(images[i], (1, 2, 0))mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])picture_show = std * picture_show + meanpicture_show = np.clip(picture_show, 0, 1)plt.imshow(picture_show)plt.axis('off')plt.show()
visualize_model(best_ckpt_path, dataset_val)

在这里插入图片描述
在这里插入图片描述

import time
L = time.localtime()
print(time.

心得

迭代50次,效果还是很显著的,不错不错。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/42619.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB:掌握核心常用命令语句,精通数据操作

标题&#xff1a;MongoDB&#xff1a;掌握核心命令&#xff0c;精通数据操作 前言&#xff1a; MongoDB 是一种非关系型数据库&#xff0c;以文档为中心&#xff0c;使用 JSON 格式的 BSON 来存储数据。它具有高可用性、高性能和易于扩展的特点&#xff0c;被广泛应用于各种规…

Laravel: 优雅构建PHP应用的现代框架

在PHP开发生态中&#xff0c;Laravel是一个广受欢迎的现代Web应用框架。以其优雅、简洁的代码风格和强大的功能著称&#xff0c;Laravel使得开发复杂应用变得简单而高效。本文将带你深入了解Laravel框架的核心特性、优势以及如何开始使用这个框架。 Laravel框架简介 Laravel是…

接口(interface)中定义 `default` 方法

在 Java 8 及以后版本中&#xff0c;接口&#xff08;interface&#xff09;中可以定义 default 方法。default 方法允许接口提供一个默认的实现&#xff0c;使得接口不仅仅是方法签名的集合&#xff0c;也可以包含方法的具体实现。这一特性提供了更大的灵活性和向后兼容性。以…

张量分解(2)——张量运算(内积、外积、直积、范数)

&#x1f345; 写在前面 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;这里是hyk写算法了吗&#xff0c;一枚致力于学习算法和人工智能领域的小菜鸟。 &#x1f50e;个人主页&#xff1a;主页链接&#xff08;欢迎各位大佬光临指导&#xff09; ⭐️近…

MATLAB贝叶斯线性回归模型案例

采用辛烷值数据集“spectra_data.mat”&#xff08;任意数据集均可&#xff09;&#xff0c;介绍贝叶斯线性回归模型的构建和使用流程。 运行结果如下&#xff1a; 训练集预测精度指标如下: 训练集数据的R2为: 1 训练集数据的MAE为: 0.00067884 训练集数据的RMSE为: 0.0008893…

STM32点灯闪烁

stm32c8t6引脚图 开发板引脚图 GPIO端口的每个位可以由软件分别配置成 多种模式。 ─ 输入浮空 ─ 输入上拉 ─ 输入下拉 ─ 模拟输入 ─ 开漏输出 ─ 推挽式输出 ─ 推挽式复用功能 ─ 开漏复用功能 配置GPIO端口步骤&#xff1a;开启时钟->使用结构体设置输出模式…

水仙花数算法

一、水仙花的传说 希腊神话故事 传说希腊神话里&#xff0c;美少年纳西索斯&#xff08;Narcissus&#xff09;是希腊最俊美的男子&#xff0c;无数的少女对他一见倾心&#xff0c;可他却自负地拒绝了所有的人。这当中包括美丽的山中仙女伊可&#xff08;Echo&#xff09;。伊可…

分享一些提升效率的办公、学习神器!

分享一些提升效率的办公、学习神器&#xff01; 文章目录 分享一些提升效率的办公、学习神器&#xff01; 一、 ✅ 文件搜索工具 Everything&#xff1a;1.1 Everything 主要功能&#xff1a;1.2 Everything 下载地址&#xff1a; 二、 ✅ 文件压缩解压工具 7 - Zip&#xff1a…

AI免费英语学习在线工具:Pi;gpt;其他大模型AI 英语学习智能体工具

1、pi(强烈推荐&#xff1a;可以安卓下载使用) https://pi.ai/talk &#xff08;网络国内使用方便&#xff09; 支持实时聊天与语音对话 2、chatgpt&#xff08;强烈推荐&#xff1a;可以安卓下载使用) https://chat.openai.com/ &#xff08;网络国内使用不方便&#xf…

2028年企业云存储支出翻倍,达到1280亿美元

根据Omdia的研究&#xff0c;到2028年&#xff0c;企业云存储支出将从去年的570亿美元翻一番以上&#xff0c;达到1280亿美元。该研究分析了基础设施即服务&#xff08;IaaS&#xff09;和平台即服务&#xff08;PaaS&#xff09;数据中心的收入&#xff0c;作为年度存储数据服…

C++初学者指南-4.诊断---valgrind

C初学者指南-4.诊断—Valgrind Valgrind&#xff08;内存错误检测工具&#xff09; 检测常见运行时错误 读/写释放的内存或不正确的堆栈区域使用未初始化的值不正确的内存释放&#xff0c;如双重释放滥用内存分配函数内存泄漏–非故意的内存消耗通常与程序逻辑缺陷有关&#xf…

Halcon 背景网格产品刮伤缺陷检测

* 关闭窗口 dev_close_window ()*关闭程序计数器,图形变量更新,窗口图形更新 dev_update_off ()*设置图像路径 Path : lcd/mura_defects_blur_*读取一张图像 read_image (Image, Path 01)*获取图像大小 get_image_size (Image, Width, Height)*创建一个新窗体 dev_open_window…

Apache Seata应用侧启动过程剖析——注册中心与配置中心模块

本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 Apache Seata应用侧启动过程剖析——注册中心与配置中心模块 前言 在Seata的应用侧&#xf…

SpringBoot Elasticsearch painless 查询某个属性是否存在的复杂判断for循环判断,深入理解Painless脚本查询

在使用Spring Boot与Elasticsearch结合进行搜索应用开发时&#xff0c;我们经常会遇到需要对文档中的数组或列表类型字段进行复杂查询的情况。Elasticsearch的Painless脚本语言提供了一种强大的方式来执行这类查询&#xff0c;允许开发者在查询时执行自定义的逻辑判断。 深入理…

强化训练:day13(牛牛冲钻五、最长无重复子数组、重排字符串)

文章目录 前言1. 牛牛冲钻五1.1 题目描述1.2 解题思路1.3 代码实现 2. 最长无重复子数组2.1 题目描述2.2 解题思路2.3 代码实现 3. 重排字符串3.1 题目描述3.2 解题思路3.3 代码实现 总结 前言 1. 牛牛冲钻五   2. 最长无重复子数组   3. 重排字符串 1. 牛牛冲钻五 1.1 题…

【Scrapy】深入了解 Scrapy 中间件中的 process_spider_output 方法

准我快乐地重饰演某段美丽故事主人 饰演你旧年共寻梦的恋人 再去做没流着情泪的伊人 假装再有从前演过的戏份 重饰演某段美丽故事主人 饰演你旧年共寻梦的恋人 你纵是未明白仍夜深一人 穿起你那无言毛衣当跟你接近 &#x1f3b5; 陈慧娴《傻女》 Scrapy 是…

使用Python连接本地MySQL数据库并创建表

一、使用Python连接本地MySQL数据库并创建表 端口号&#xff1a;3307 用户名&#xff1a;root 密码&#xff1a;lms123456 数据库&#xff1a;test_01 from orm import *# 数据库连接对象 db MySQLDatabase(host"localhost",port3307,user"root",pas…

CUDA Install--Configure

CUDA环境正确设置 要确保你的系统环境变量正确设置&#xff0c;以包含CUDA 12.2的路径&#xff0c;可以按照以下步骤操作 步骤1&#xff1a;编辑.bashrc文件 打开并编辑你的.bashrc文件&#xff0c;以确保环境变量正确设置。 nano ~/.bashrc 在文件末尾添加以下内容&#xff…

LeetCode 35, 242, 994

目录 35. 搜索插入位置题目链接标签思路代码 242. 有效的字母异位词题目链接标签思路代码 994. 腐烂的橘子题目链接标签思路代码 35. 搜索插入位置 题目链接 35. 搜索插入位置 标签 数组 二分查找 思路 本题与 704. 二分查找 十分相似&#xff0c;只不过本题在找不到 tar…

llama2阅读: logits是什么?

Logits是一个在深度学习中&#xff0c;几乎一直都有的概念&#xff0c;它意味着模型unnormalized final scores. 然后你可以通过softmax得到模型针对你class的概率分布。 而在llama2的代码中&#xff0c;同样有logits的使用&#xff0c;那么针对llama2&#xff0c;logits的作用…