数字信号处理及MATLAB仿真(3)——采样与量化

        今天写主要来编的程序就是咱们AD变换的两个步骤。一个是采样,还有一个是量化。大家可以先看看,这一过程当中的信号是如何变化的。信号的变换图如下。

        先说说采样,采样是将连续时间信号转换为离散时间信号的过程。在采样过程中,连续信号在特定时间间隔(采样间隔)内被测量和记录,这些时间间隔称为采样周期。采样率(或采样频率)是指每秒钟采样的次数,通常用赫兹(Hz)表示。采样是数字信号处理中的一个关键步骤,因为它将模拟信号转换为可以用数字设备(如计算机)处理的离散信号。大家在图上也能很明显的看出来,不知道大家还记不记得那个公式xₐ(nT)=x(n),每隔一定的距离在采一个值。在理想的采样中也可以写成模拟信号乘上冲激串,即\sum_{m=-\infty }^{\infty }x _{a}(t)\delta (t-mT)。对应上面的概念,这里的T就是采样周期,fs=1/T就是采样频率。就先说这么多吧,我们看程序。

%采样信号的写法
%奈奎斯特采样定理的体现,过采样的优势
%注意使用“;”,抑制输出:当分号放在表达式后面时,运算后命令窗口中不显示表达式的计算结果。clear all
close allf = 10;
fs = 260;%采样信号的写法
%第一种
t = 0:1/fs:1
signal1 = sin(2*pi*f*t);
%第二种
length = [0:300]
signal2 = sin(2*pi*f*length/fs);figure(1)
plot(signal1,'-*')figure(2)
plot(signal2,'-*')

        这里可以有两种不同的写法,个人比较喜欢第二种。大家随便选,来看图像,这里建议用stem函数来看它的离散图像。大家感兴趣的可以数一下一个周期内正好为26个点

        第二个概念是量化,量化是将模拟信号或连续取值的信号转换为有限个离散值的过程。在数字信号处理和通信中,由于数字系统只能处理离散的数值,所以需要对连续的模拟信号进行量化。量化通过将信号的取值范围划分成若干个区间(称为量化级),然后将落在每个区间内的信号值用一个特定的离散值(量化值)来表示。量化会引入量化误差,即量化后的信号值与原始信号值之间的差异。量化误差的大小取决于量化级的数量和量化方式。量化级越多,量化误差通常越小,但同时也会增加数据量和处理复杂度。在开始的图像当中,我们可以看到信号被分成一个阶梯函数,那样的就是我们的一个量化信号。大家在学AD转换的时候,或许会学到过量化阶数这一概念。这里的量化级数则是另一个和它相关的概念。量化级数和量化阶数是量化过程中的两个相关概念。量化级数是指量化后可能的取值个数。量化阶数则是相邻两个量化电平之间的差值。它们之间存在这样的关系:量化阶数 = 量化范围 / 量化级数。这里先给出一个简单的代码。仅供参考。

%量化信号
%% 生成一个正弦波信号
t = 0:0.01:1;             % 时间向量
x = sin(2 * pi * 5 * t);  % 正弦波信号% 定义量化参数
num_levels = 16;           % 量化级数
q_levels = linspace(-1, 1, num_levels); % 量化级别% 对信号进行量化
x_quantized = quantiz(x, q_levels);% 绘制原始信号和量化信号
figure(1);
subplot(2, 1, 1);
plot(t, x);
xlabel('t/s');
ylabel('幅值');
title('原信号');subplot(2, 1, 2);
stairs(t, x_quantized, 'r');
xlabel('t/s');
ylabel('幅值');
title('量化后的信号');
grid on;% 显示量化级别
disp('量化级别:');
disp(q_levels);% 量化函数定义
function y = quantiz(x, q_levels)% 初始化量化后的输出信号y = zeros(size(x));% 对每个信号样本进行量化for i = 1:length(x)% 找到最接近的量化级别[~, idx] = min(abs(q_levels - x(i)));y(i) = q_levels(idx);end
end

       图像如下

        当然在MATLAB当中,我们还可以使用向上取整或者是向下取整或者是四舍五入等等能够让信号归一到不同水平的电平上就行了。

        更多的话,大家继续follow我吧。

        欲知后事如何,且听下回分解。OVO.......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41927.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进程的控制-孤儿进程和僵尸进程

孤儿进程 : 一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被 init 进程( 进程号为 1) 所收养,并由 init 进程对它们完成状态收集工作 为了释放子进程的占用的系统资源: …

解决Linux环境Qt报“cannot find -lgl“问题

今天,在Ubuntu 18.04.6环境下,安装Qt5.14.2之后,运行一个QWidget工程,发现Qt报"cannot find -lgl"错误。     出现这种现象的原因:Qt的Path路径没有配置,缺少libqt4-dev依赖包和一些必要的组件…

拉曼光谱入门:2.拉曼光谱发展史、拉曼效应与试样温度的确定方法

1.拉曼光谱技术发展史 这里用简单的箭头与关键字来概括一下拉曼光谱技术的发展史 1928年:拉曼效应的发现 → 拉曼光谱术的初步应用20世纪40年代:红外光谱术的发展 → 拉曼光谱术的限制20世纪60年代:激光作为光源的引入 → 拉曼光谱术的性能提…

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【17】认证服务01—短信/邮件/异常/MD5

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【17】认证服务01 环境搭建验证码倒计时短信服务邮件服务验证码短信形式:邮件形式: 异常机制MD5参考 环境搭建 C:\Windows\System32\drivers\etc\hosts 192.168.…

使用flask的web网页部署介绍

使用flask的web网页部署介绍 文章目录 前言一、网页介绍二、数据库设计介绍总结 前言 flaskbootstrapjquerymysql搭建三叶青在线识别网站,使用nginxgunicorn将网站部署在腾讯云上,配置SSL证书。网站地址:https://www.whtuu.cn 三叶青图像识…

2024年6月后2周重要的大语言模型论文总结:LLM进展、微调、推理和对齐

本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题,从模型优化和缩放到推理、基准测试和增强性能。 LLM进展与基准 1、 BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Com…

前端 JS 经典:监听元素重叠

场景:上拉触底加载更多,以前我们是监听滚动条距离,来判断是否触底。缺点是触发频繁,就算使用防抖,也会有加载延迟的缺点。现在我们可以通过 IntersectionObserver 构造函数,去监听元素和其他元素是否重叠&a…

模拟面试001-Java开发工程师+简历+问题+回答

模拟面试001-Java开发工程师简历问题回答 目录 模拟面试001-Java开发工程师简历问题回答面试简历面试官题问求职者回答1. 关于Java编程和技术栈2. 关于XX在线购物平台项目3. 关于XX企业资源规划系统项目4. 团队协作与项目管理5. 个人发展与职业规划 参考资料 面试简历 **个人信…

python机器学习2

1.面向对象程序设计(OOP) (1)def 函数名称(参数),创建函数的动作,并将参数代入函数中,以下设计一个函数fun2,并且在程序中调用该函数。 (2&…

【C++】模板进阶--保姆级解析(什么是非类型模板参数?什么是模板的特化?模板的特化如何应用?)

目录 一、前言 二、什么是C模板? 💦泛型编程的思想 💦C模板的分类 三、非类型模板参数 ⚡问题引入⚡ ⚡非类型模板参数的使用⚡ 🔥非类型模板参数的定义 🔥非类型模板参数的两种类型 &#x1f52…

大数据处理系统面临挑战

当今,大数据的到来,已经成为现实生活中无法逃避的挑战。每当我们要做出决策的时候,大数据就无处不在。大数据术语广泛地出现也使得人们渐渐明白了它的重要性。大数据渐渐向人们展现了它为学术、工业和政府带来的巨大机遇。与此同时&#xff0…

linux下高级IO模型

高级IO 1.高级IO模型基本概念1.1 阻塞IO1.2 非阻塞IO1.3 信号驱动IO1.4 IO多路转接1.5 异步IO 2. 模型代码实现2.1 非阻塞IO2.2 多路转接-selectselect函数介绍什么才叫就绪呢?demoselect特点 2.3 多路转接-pollpoll函数介绍poll优缺点demo 2.4 多路转接-epoll&…

Oracle数据库服务器CPU占用率巨高的问题排查思路

1、通过TOP 命令查看PID: PID USER PR NI VIRT RES SHR S %CPU %MEM TIME COMMAND 1560 oracle 20 0 38.978g 0.038t 16296 R 100.0 15.3 1069:13 python3 Main_Mem.py ProcessLog1 con…

为什么人一旦开窍了就变的特别厉害?

点击上方△腾阳 关注 《让子弹飞》这部电影非常经典,其中一个名场面就是“六子吃粉”。 电影里,胡万对着老六就是一顿狂轰滥炸:“吃了两碗粉,就给一碗的钱,你当咱这是慈善堂呢?” 老六一听,那…

自定义控件之绘图篇(二)路径及文字

在Android中,自定义控件的绘图功能非常强大,允许你创建复杂且美观的用户界面元素。除了基本的几何图形,你还可以使用路径(Path)和文字(Text)来丰富你的控件设计。下面是如何在自定义控件中使用这…

SpringBoot+ELK 收集日志的两种方式

方式一、FileBeatlogstash 7.5.1(docker)ES(docker)springboot 日志文件 应用方式 我们采用ELFK 架构采集日志,直接读取日志生成的文件,不对Springboot的日志任何的修改。也就是FileBeat 通过读取日志文件位置获取日志内容,然后发送至logsta…

This Person Does Not Exist:AI绘画工具创造的虚构人物

引言 随着人工智能技术的飞速发展,AI绘画工具已经能够生成逼真的虚构人物图像。这些工具利用生成对抗网络(GAN)等深度学习技术,能够生成从未存在过的高质量人脸图像。“This Person Does Not Exist” 是其中最著名的一个网站&…

移动应用开发课设——原神小助手文档(1)

2023年末,做的移动应用开发课设,分还算高,项目地址:有帮助的话,点个赞和星呗~ GitHub - blhqwjs/-GenShin_imp: 2023年移动应用开发课设 本文按照毕业论文要求来写,希望对大家有所帮助。 xxxx大学课程设计报…

C++--partition库函数

介绍 在C中,partition函数通常是指STL(Standard Template Library)中的std::partition算法,它用于对一个序列进行分区操作。具体来说,std::partition接受一个范围和一个谓词(predicate)作为参数…

安徽医科大学学报

《安徽医科大学学报》是安徽医科大学主办的医学综合类学术期刊。主要刊登医学科研、医疗成果和进展的学术性期刊,国内外公开发行。主办单位为安徽医科大学,主管单位为安徽省教育厅。现任主编是著名妇产科学和生殖医学专家曹云霞教授。 《东南医刊》和《新…