极限学习机(Extreme Learning Machine,ELM)及其Python和MATLAB实现

极限学习机(Extreme Learning Machine,ELM)是一种快速而有效的机器学习算法,最初由马洪亮等人于2006年提出。ELM是一种单隐层前馈神经网络,其背景源于对传统神经网络训练过程中反向传播算法的改进与优化。相比传统神经网络,ELM在网络训练速度上具有明显优势,同时在一些实际应用中取得了不错的效果。

**原理**:
ELM的核心原理是随机初始化输入层到隐藏层的连接权重和隐藏层到输出层的连接权重,并固定这些权重值,而不对其进行调整。在训练过程中只需优化输出层到隐藏层的连接权重即可。这种简化训练过程的方法大大提高了训练速度,同时降低了网络过拟合的风险。

**实现步骤**:
1. 随机初始化输入层到隐藏层的连接权重和隐藏层到输出层的连接权重。
2. 将原始数据输入到隐藏层,并计算隐藏层的输出。
3. 最小二乘法或梯度下降等方法来优化输出层到隐藏层的连接权重。
4. 在隐藏层输出后加入激活函数(如Sigmoid、ReLU等),得到最终的输出结果。

**优缺点**:
- 优点:
1. 训练速度快:由于仅需要优化输出层到隐藏层的连接权重,大大降低了训练时间。
2. 易于实现:ELM的实现相对简单,不需要复杂的反向传播过程。
3. 可拓展性强:ELM结构简单,易于扩展到大规模数据处理。
- 缺点:
1. 容易过拟合:由于随机初始化权重,可能导致模型过拟合。
2. 需要适当调节参数:选择合适的隐藏层神经元数量和激活函数可能需要一定经验和调节。

**相关应用**:
ELM广泛应用于数据挖掘、模式识别、图像处理、预测分析等领域。具体应用包括但不限于:
1. 人脸识别:利用ELM进行人脸特征提取和识别。
2. 金融预测:应用ELM对股市数据等进行学习和预测。
3. 工业控制:基于ELM设计智能控制系统,实现对工业过程的优化和控制。
4. 医疗诊断:利用ELM对医疗数据进行分析,帮助医生进行疾病诊断和预测。

总的来说,极限学习机作为一种高效且易于实现的机器学习算法,在许多实际应用中展现出了不俗的性能与潜力。
以下是极限学习机(ELM)用于回归的Python代码示例:

import numpy as np
from sklearn.preprocessing import normalize

class ELMRegressor:
    def __init__(self, input_size, hidden_size):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.input_weights = np.random.rand(input_size, hidden_size)  # 初始化输入层到隐藏层的连接权重
        self.bias = np.random.rand(hidden_size)  # 隐藏层偏置
        self.beta = None  # 输出层到隐藏层的连接权重

    def train(self, X, y):
        H = np.dot(X, self.input_weights) + self.bias  # 计算隐藏层输出
        H = np.tanh(H)  # 使用tanh作为隐藏层的激活函数
        self.beta = np.dot(np.linalg.pinv(H), y)  # 根据最小二乘法计算输出层权重

    def predict(self, X):
        H = np.dot(X, self.input_weights) + self.bias
        H = np.tanh(H)
        y_pred = np.dot(H, self.beta)  # 预测输出
        return y_pred

# 示例数据
X = np.random.rand(100, 5)  # 100个样本,5个特征
y = np.random.rand(100, 1)  # 对应的目标值

# 实例化ELM模型并训练
elm = ELMRegressor(input_size=5, hidden_size=10)
elm.train(X, y)

# 预测
X_test = np.random.rand(10, 5)  # 用于预测的样本
y_pred = elm.predict(X_test)
print(y_pred)

以下是极限学习机(ELM)用于回归的MATLAB代码示例:

% 极限学习机回归器的MATLAB代码示例

classdef ELMRegressor
    properties
        input_size
        hidden_size
        input_weights
        bias
        beta
    end
    
    methods
        function obj = ELMRegressor(input_size, hidden_size)
            obj.input_size = input_size;
            obj.hidden_size = hidden_size;
            obj.input_weights = randn(input_size, hidden_size);  % 初始化输入层到隐藏层的连接权重
            obj.bias = randn(1, hidden_size);  % 隐藏层偏置
            obj.beta = [];  % 输出层到隐藏层的连接权重
        end
        
        function obj = train(obj, X, y)
            H = X * obj.input_weights + obj.bias;  % 计算隐藏层输出
            H = tanh(H);  % 使用tanh作为隐藏层的激活函数
            obj.beta = pinv(H) * y;  % 根据最小二乘法计算输出层权重
        end
        
        function y_pred = predict(obj, X)
            H = X * obj.input_weights + obj.bias;
            H = tanh(H);
            y_pred = H * obj.beta;  % 预测输出
        end
    end
end

% 示例数据
X = rand(100, 5);  % 100个样本,5个特征
y = rand(100, 1);  % 对应的目标值

% 实例化ELM模型并训练
elm = ELMRegressor(5, 10);
elm = elm.train(X, y);

% 预测
X_test = rand(10, 5);  % 用于预测的样本
y_pred = elm.predict(X_test);
disp(y_pred);

以下是极限学习机(ELM)用于分类任务的Python和MATLAB代码示例:

Python代码示例:

import numpy as np

class ELMClassifier:
    def __init__(self, input_size, hidden_size, num_classes):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_classes = num_classes
        self.input_weights = np.random.rand(input_size, hidden_size)  # 初始化输入层到隐藏层的连接权重
        self.bias = np.random.rand(hidden_size)  # 隐藏层偏置
        self.beta = np.random.rand(hidden_size, num_classes)  # 输出层到隐藏层的连接权重

    def train(self, X, y):
        H = np.dot(X, self.input_weights) + self.bias  # 计算隐藏层输出
        H = np.tanh(H)  # 使用tanh作为隐藏层的激活函数
        T = np.eye(self.num_classes)[y]  # 将类别转换为one-hot编码
        self.beta = np.dot(np.linalg.pinv(H), T)  # 根据最小二乘法计算输出层权重
        
    def predict(self, X):
        H = np.dot(X, self.input_weights) + self.bias
        H = np.tanh(H)
        output = np.dot(H, self.beta)  # 预测输出
        y_pred = np.argmax(output, axis=1)  # 取最大值对应的类别作为预测结果
        return y_pred

# 示例数据
X = np.random.rand(100, 5)  # 100个样本,5个特征
y = np.random.randint(0, 3, size=100)  # 3类分类任务

# 实例化ELM分类器并训练
elm = ELMClassifier(input_size=5, hidden_size=10, num_classes=3)
elm.train(X, y)

# 预测
X_test = np.random.rand(10, 5)  # 用于预测的样本
y_pred = elm.predict(X_test)
print(y_pred)

MATLAB代码示例:

% 极限学习机分类器的MATLAB代码示例

classdef ELMClassifier
    properties
        input_size
        hidden_size
        num_classes
        input_weights
        bias
        beta
    end
    
    methods
        function obj = ELMClassifier(input_size, hidden_size, num_classes)
            obj.input_size = input_size;
            obj.hidden_size = hidden_size;
            obj.num_classes = num_classes;
            obj.input_weights = randn(input_size, hidden_size);  % 初始化输入层到隐藏层的连接权重
            obj.bias = randn(1, hidden_size);  % 隐藏层偏置
            obj.beta = randn(hidden_size, num_classes);  % 输出层到隐藏层的连接权重
        end
        
        function obj = train(obj, X, y)
            H = X * obj.input_weights + obj.bias;  % 计算隐藏层输出
            H = tanh(H);  % 使用tanh作为隐藏层的激活函数
            T = eye(obj.num_classes);
            T = T(y + 1, :);  % 将类别转换为one-hot编码
            obj.beta = pinv(H) * T;  % 根据最小二乘法计算输出层权重
        end
        
        function y_pred = predict(obj, X)
            H = X * obj.input_weights + obj.bias;
            H = tanh(H);
            output = H * obj.beta;  % 预测输出
            [~, y_pred] = max(output, [], 2);  % 取最大值对应的类别作为预测结果
        end
    end
end

% 示例数据
X = rand(100, 5);  % 100个样本,5个特征
y = randi([1, 3], 100, 1);  % 3类分类任务

% 实例化ELM分类器并训练
elm = ELMClassifier(5, 10, 3);
elm = elm.train(X, y);

% 预测
X_test = rand(10, 5);  % 用于预测的样本
y_pred = elm.predict(X_test);
disp(y_pred);

以上是分别使用Python和MATLAB实现的极限学习机分类器的代码示例。在代码中,ELM分类器用于多分类任务,可以根据实际情况调整隐藏层大小、输入特征数和输出类别数等参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41332.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA连接PLC实现点位数据的读写操作-iot-communication

iot-communication 简介 iot-communication 是一个开源项目,主要服务于物联网(IoT)领域的开发者,提供了一套全面且深入的工具集,以促进物联网应用的开发。该项目是由 Oscura(网名 xingshuang)创建的,并且自2019年启动以来持续更新,到了2024年已经发布了 v1.5.0 版本。…

使用中国大陆镜像源安装最新版的 docker Deamon

在一个智算项目交付过程中,出现了新建集群中的全部 docker server V19 进程消失、仅剩 docker server 的 unix-socket 存活的现象。 为了验证是否是BD产品研发提供的产品deploy语句缺陷,需要在本地环境上部署一个简单的 docker Deamon 环境。尴尬的是&a…

针对某客户报表系统数据库跑批慢进行性能分析及优化

某客户报表系统数据库跑批时间过长,超出源主库较多,故对其进行了分析调优,目前状态如下: 1、业务连接的rac的scanip,因为负载均衡将跑批的连接连接到了多个计算节点导致节点间通讯成本较高,故速率缓慢&…

HexPlane: A Fast Representation for Dynamic Scenes一种动态场景的快速表示方法

Abstract 动态三维场景的建模与再现是三维视觉领域的一个具有挑战性的课题。先前的方法基于 NERF 并依赖于隐式表示这是缓慢的,因为它需要许多 MLP 评估,限制真实世界的应用程序。我们展示了动态三维场景可以明确地表示为六个平面的学习功能&#xff0c…

10.10记录

云轴-电话面试 python- 深拷贝和浅拷贝 copy.copy():浅拷贝是创建一个新对象,但是新对象的元素是原对象的引用。也就是说,新对象和原对象共享同一块内存空间。当原对象的元素发生改变时,新对象的元素也会随之改变。 copy.deepco…

SQL语句(DCL)

DCL英文全称Data Control Language(数据控制语言),用来管理数据库用户、控制数据库的访问权限 DCL-管理用户 create user itcastlocalhost identified by 123456 ;-- 修改用户heima的密码为1234 alter user heima% identified with mysql_native_passwo…

C++ windows下使用openvino部署yoloV8

目录 准备版本: 准备事项: 选择配置界面: 下载界面: ​编辑 添加VS配置: 准备代码: yolov8.h yolov8.cpp detect.cpp 如何找到并放置DLL: 准备版本: opencv 4.6.0 openvino 2024.0…

大模型成为软件和数据工程师

前言 想象一下这样一个世界:人工智能伙伴负责编码工作,让软件和数据工程师释放他们的创造天赋来应对未来的技术挑战! 想象一下:你是一名软件工程师,埋头于堆积如山的代码中,淹没在无数的错误中&#xff0…

基于React和TypeScript的开源白板项目(Github项目分享)

在学习前端开发的过程中,有时候我们需要一些有趣的项目来提升我们的技能。今天我要给大家介绍的是一个非常酷的项目——NinjaSketch,这是一个用React和TypeScript构建的简易白板工具。这个项目使用了Rough.js来实现手绘风格的效果。尽管这个应用不是响应…

【UE5.3】笔记8 添加碰撞,检测碰撞

添加碰撞 打开BP_Food,添加Box Collision组件,与unity类似: 调整Box Collision的大小到刚好包裹物体,通过调整缩放和盒体范围来控制大小,一般先调整缩放找个大概大小,然后调整盒体范围进行微调。 碰撞检测 添加好碰撞…

基于jeecgboot-vue3的Flowable流程-集成仿钉钉流程(二)增加基本的发起人审批与多用户多实例

因为这个项目license问题无法开源,更多技术支持与服务请加入我的知识星球。 1、AssigneeNode 增加approvalText public abstract class AssigneeNode extends Node {// 审批对象private AssigneeTypeEnum assigneeType;// 表单内人员private String formUser;// 表…

Python从0到100(三十七):数据提取的概念和数据分类

1. 爬虫中数据的分类 在爬虫开发过程中,我们会遇到多种类型的数据。了解这些数据的类型对于有效地提取和解析信息至关重要。 结构化数据 结构化数据是指具有固定格式和模式的数据,常见的结构化数据格式包括JSON和XML。 处理方式:可以直接转换为Python的字典或列表等数据类…

SCI一区级 | Matlab实现BO-Transformer-LSTM多特征分类预测/故障诊断

SCI一区级 | Matlab实现BO-Transformer-LSTM多特征分类预测/故障诊断 目录 SCI一区级 | Matlab实现BO-Transformer-LSTM多特征分类预测/故障诊断效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.【SCI一区级】Matlab实现BO-Transformer-LSTM特征分类预测/故障诊断&…

算力共享存在的痛点问题

目录 算力共享存在的痛点问题 一、资源分配不均 二、成本效益问题 三、技术兼容性和标准不统一 四、安全性和隐私保护问题 五、算力调度效率问题 算力共享存在的痛点问题 算力共享在当前阶段确实面临一些痛点问题,这些问题主要可以归纳为以下几个方面&#x…

C语言 | Leetcode C语言题解之第214题最短回文串

题目&#xff1a; 题解&#xff1a; char* shortestPalindrome(char* s) {int n strlen(s);int fail[n 1];memset(fail, -1, sizeof(fail));for (int i 1; i < n; i) {int j fail[i - 1];while (j ! -1 && s[j 1] ! s[i]) {j fail[j];}if (s[j 1] s[i]) {f…

HTML【详解】超链接 a 标签的四大功能(页面跳转、页内滚动【锚点】、页面刷新、文件下载)

超链接 a 标签主要有以下功能&#xff1a; 跳转到其他页面 <a href"https://www.baidu.com/" target"_blank" >百度</a>href&#xff1a;目标页面的 url 地址或同网站的其他页面地址&#xff0c;如 detail.htmltarget&#xff1a;打开目标页面…

PLL和CDR的内部结构及其区别

比较PLL和CDR的内部结构及其区别&#xff1a; 基本结构&#xff1a; PLL&#xff08;相位锁定环&#xff09;&#xff1a; 相位检测器环路滤波器压控振荡器&#xff08;VCO&#xff09;分频器&#xff08;可选&#xff0c;用于频率合成&#xff09; CDR&#xff08;时钟数据恢复…

windows电脑网络重置后wifi列表消失怎么办?

我们的电脑网络偶尔会出现异常&#xff0c;我们通常会下意识选择网络诊断&#xff0c;运行完诊断后一般会让我们选择重置网络&#xff0c;然而&#xff0c;重置后wifi列表突然消失&#xff0c;无法愉快地上网了&#xff0c;找了一圈&#xff0c;都说是更改适配器选项&#xff0…

4、SSD主控

简述 主控是个片上系统&#xff0c;由硬件和固件组成一个功能完整的系统&#xff1b;上文所述的FTL就属于主控的固件范畴。主控闪存构成了整个SSD&#xff0c;在闪存确定的情况下&#xff0c;主控就反映了各家SSD的差异。实时上各家SSD的差异也主要反应在主控上&#xff0c;毕…

小学英语语法

目录 a和an的用法名词的单复数be动词和人称代词&#xff08;主格&#xff09;指示代词形容词物主代词名词所有格双重所有格方位介词some&#xff0c;any和no的用法How many和How much的用法情态动词can的用法祈使句人称代词&#xff08;宾格&#xff09;常见实义动词的用法一般…