CVPR2024自动驾驶轨迹预测方向的论文整理

2024年自动驾驶轨迹预测方向的论文汇总

1、Producing and Leveraging Online Map Uncertainty in Trajectory Prediction

论文地址:https://arxiv.org/pdf/2403.16439
提出针对在线地图不确定性带给轨迹预测的影响对应的解决方案。
在轨迹预测中,利用在线地图不确定性是一个重要的课题。随着位置数据的增加和地图更新的频率加快,准确地处理这些不确定性变得至关重要。以下是一些关键步骤:

  • 收集数据:首先,需要收集大量的位置数据,并确保这些数据来自可靠的来源。
  • 构建地图模型:使用收集到的数据来构建地图模型。这可能涉及到使用机器学习算法来识别模式并生成预测。
  • 处理不确定性:考虑到地图更新的频率,必须考虑如何处理不确定性。一种方法是使用概率分布来表示每个位置点的不确定性。
  • 集成实时更新:为了保持准确性,需要将实时更新集成到模型中。这可以通过定期更新地图模型来实现。
  • 评估性能:最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。

通过这些步骤,我们可以有效地利用在线地图的不确定性来提高轨迹预测的准确性。

2、CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction in Autonomous Driving

论文:https://openaccess.thecvf.com/content/CVPR2024/papers/Pourkeshavarz_CaDeT_a_Causal_Disentanglement_Approach_for_Robust_Trajectory_Prediction_in_CVPR_2024_paper.pdf
CaDeT的核心思想是通过因果分解来分离出环境因素对轨迹预测的影响,并将其从预测模型中剔除从而训练一个自动适应新环境的轨迹预测模型。
实验数据集:AV2,无代码公开

3、Adapting to Length Shift: FlexiLength Network for Trajectory Prediction

论文:https://arxiv.org/pdf/2404.00742
篇论文主要关注的是如何解决轨迹预测任务中长度变化的问题,通过引入一个长度控制模块来实现的,该模块可以根据输入轨迹的长度动态地生成一个长度向量,用于指导后续的预测过程。
数据集:nuScenes, AV1,base model:HiVT,下图为HiVT使用了他的方案后的涨点:
在这里插入图片描述

4、HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention

论文地址:https://arxiv.org/pdf/2404.06351
代码地址:https://github.com/XiaolongTang23/HPNet
该论文介绍了一种名为 HPNet 的新方法,它利用历史预测注意力来提高轨迹预测的准确性。传统的轨迹预测模型通常只考虑当前时刻的环境信息,而忽视了之前预测的历史信息。然而,HPNet 引入了一个历史预测注意力机制,使得模型能够更好地利用先前的预测结果来指导后续的预测过程。
具体来说,HPNet 包含以下几个关键步骤:首先,需要收集大量的位置数据,并确保这些数据来自可靠的来源。其次使用收集到的数据来训练一个能够产生更准确预测的模型。在这个过程中,引入历史预测注意力机制。
然后使用历史预测注意力机制来训练模型,使其能够更好地利用先前的预测结果来指导后续的预测过程。最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。通过这些步骤,HPNet 提供了一种新的方法来提高动态轨迹预测的准确性和鲁棒性。

实验数据集:Argoverse1
代码地址:https://github.com/XiaolongTang23/HPNet
论文地址:https://arxiv.org/pdf/2404.06351
实验结果:数据集:AV1
在这里插入图片描述

5、DAMM:Density-Adaptive Model Based on Motif Matrix for Multi-Agent Trajectory Prediction

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Wen_Density-Adaptive_Model_Based_on_Motif_Matrix_for_Multi-Agent_Trajectory_Prediction_CVPR_2024_paper.pdf

技术文档:https://openaccess.thecvf.com/content/CVPR2024/supplemental/Wen_Density-Adaptive_Model_Based_CVPR_2024_supplemental.pdf
实验数据集:nuScenes Argoverse

这篇论文主要探讨如何通过基于模式矩阵的密度自适应模型来实现多代理轨迹预测,模式矩阵是一种用于表示道路用户之间相互作用关系的数据结构, 它能够捕捉到不同道路用户之间的复杂交互行为,例如跟随、并行行驶等。DAM能够根据当前场景中的道路用户密度动态调整其内部参数,从而提高预测准确性。

6、MATRIX: Multi-Agent Trajectory Generation with Diverse Contexts

轨迹生成方向相关。该论文的主要思想是提出一种新的方法来生成具有丰富上下文信息的多智能体轨迹。
论文地址:https://arxiv.org/pdf/2403.06041v1

7、SeNeVA:Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture

论文地址:https://arxiv.org/pdf/2404.03789
是一篇关于运动预测中不确定性度量的论文。该论文的主要思想是提出了一种基于变分贝叶斯混合模型(Variational Bayesian Mixture, VBM)的方法来量化运动预测中的不确定性。传统的运动预测方法往往假设预测结果是确定性的,即预测结果只有一个确定的值。然而,在实际应用中,我们经常需要面对各种不确定因素,比如传感器噪声、模型误差等,这些都会导致预测结果存在一定的不确定性。因此,准确地量化并表达这种不确定性对于运动预测系统的可靠性和安全性至关重要。
论文中提出的 VBM 方法通过引入贝叶斯统计学的思想,将预测结果视为由多个潜在状态组成的混合分布。每个潜在状态对应着一种可能的运动模式,而混合系数则反映了不同模式的概率大小。这样,我们就可以通过计算混合系数来衡量预测结果的不确定性。
具体来说,VBM 方法首先构建了一个包含多个潜在状态的混合模型,然后利用变分贝叶斯技术对模型参数进行优化。优化过程中,不仅考虑了数据的似然函数,还考虑了模型的复杂度惩罚项,以避免过度拟合。最终,通过分析混合系数的分布情况,我们可以得到一个概率分布图,直观地展示出预测结果的不确定性。
实验结果在多个数据集上验证(包括AV2),效果优于DenseTNT,Forecast-MAE

8、Continual Learning for Motion Prediction Model via Meta-Representation Learning and Optimal Memory Buffer Retention Strategy

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Kang_Continual_Learning_for_Motion_Prediction_Model_via_Meta-Representation_Learning_and_CVPR_2024_paper.pdf
实验数据集:nuScenes
该论文的主要思想是提出了一种结合元表示学习和最优记忆缓冲区保留策略的连续学习方法。
传统的运动预测模型通常假设训练数据集是静态不变的,然而在现实世界中,我们经常需要处理不断变化的数据流。这就要求我们的模型能够适应新的数据分布,同时保持对之前数据的有效记忆。因此,我们需要引入连续学习的概念,即在模型训练过程中,允许新数据的加入并更新模型参数,同时保留对之前数据的记忆。

9、SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction

论文:https://arxiv.org/pdf/2403.11492
代码:https://github.com/opendilab/SmartRefine/
论文解读:论文解读
该论文的主要思想是提出了一种场景自适应的精炼框架,通过分析当前的传感器数据或者历史数据,对当前所处的场景进行识别,针对不同的场景,选择最适合的预测策略,对于每个场景,采用不同的精炼算法来进一步优化预测结果。这些算法可以包括但不限于卡尔曼滤波、粒子滤波等,为了持续改进预测性能,论文还提出了一种反馈机制。即当新的数据到来时,不仅会更新当前的预测结果,还会将这些新数据加入到训练集中,用于后续的场景识别和策略选择。
模型框架:
在这里插入图片描述

实验结果:
在这里插入图片描述

10、Generalized Predictive Model for Autonomous Driving 框架级别 目前线上预测架构设计可以关注

论文:https://arxiv.org/pdf/2403.09630
数据集:kitti,waymo, nuScenes
该论文的主要思想是提出了一种通用的预测模型,旨在为自动驾驶系统提供更准确、可靠的预测能力。前期数据预处理,然后进入模型选择与训练:根据具体的预测任务,选择合适的预测模型进行训练。这些模型可以包括但不限于回归模型、分类模型、强化学习模型等。
集成学习:为了进一步提高预测性能,论文还提出了一种集成学习的方法。即将多个不同的预测模型组合起来,形成一个更为强大的整体模型。

11、Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations

论文地址:https://arxiv.org/pdf/2403.13261
无监督的方法,可解决标注数据没有或者很少的问题.
数据集:nuScenes
该论文的主要思想是提出了一种无监督的、类别的泛化能力更强的运动预测方法,并且通过空间和时间一致性正则化来进一步提升预测精度。
数据增强:首先,通过对原始数据进行随机变换(如旋转、平移、缩放等),生成一系列的伪标签数据。
预测模型训练:然后,使用这些伪标签数据来训练一个运动预测模型。值得注意的是,这里的预测模型并不直接预测车辆的具体类别(如汽车、自行车等),而是预测车辆的运动状态(如位置、速度等)。
空间一致性正则化:为了保证预测结果在空间上的连续性,论文引入了空间一致性正则化。简单来说,就是要求相邻时刻的预测结果在空间上应该尽可能接近。
时间一致性正则化:同样地,为了保证预测结果在时间上的连续性,论文还引入了时间一致性正则化。即要求相邻时刻的预测结果在时间上也应该尽可能接近。
预测结果评估:最后,通过一些标准的评估指标(如均方误差、平均绝对误差等)来评估预测结果的质量。

12、MoST: Multi-Modality Scene Tokenization for Motion Prediction

论文:https://arxiv.org/pdf/2404.1953
端到端的,场景分块,运动预测,效果优于MultiPath++, MTR, 数据集:WOMD
该论文介绍了一种名为 MoST 的新方法,用于运动预测。

传统的运动预测模型往往只关注单个传感器的数据,而忽略了其他可用的信息源。MoST 则引入了多模态场景分割的概念,将来自多个传感器的数据整合起来,从而提高了预测的准确性。具体来说,MoST 包含以下几个关键步骤:

  • 数据收集:首先,需要收集多种类型的传感器数据,例如摄像头图像、雷达点云等。
  • 建立模型:使用收集到的数据来训练一个能够产生更准确预测的模型。在这个过程中,引入多模态场景分割的概念。
  • 训练模型:使用多模态场景分割的概念来训练模型,使其能够更好地利用来自多个传感器的数据来指导运动预测。
    -评估性能:最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。

通过这些步骤,MoST 提供了一种新的方法来提高运动预测的准确性和鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/41250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【产品与技术双视角】初创团队利用小程序云基础设施“低成本试错”

文章目录 前言一、产品视角之三大困难二、技术视角之难以抉择三、利用小程序云基础设施“低成本试错” 前言 学生团队和初创团队在没有得到风投之前,想要做出一款产品太难了,难在哪呢?难在没有资源。用最狭隘的视角看这个资源:人…

SSM中小学生信息管理系统-计算机毕业设计源码02677

摘要 随着社会的发展和教育的进步,中小学生信息管理系统成为学校管理的重要工具。本论文旨在基于SSM框架,采用Java编程语言和MySQL数据库,设计和开发一套高效、可靠的中小学生信息管理系统。中小学生信息管理系统以学生为中心,通过…

hitcontraining_uaf

BUUCTF[PWN][堆] 题目:BUUCTF在线评测 (buuoj.cn) 程序del是没有将申请的指针清零,导致可以再次调用输出print。 查看add_note函数:根据当前 notelist 是否为空,来申请了一个8字节的空间将地址(指针)放在notelist[i]中&#xff…

野指针的概念 如果规避野指针

目录 野指针的概念 有关野指针的代码 如何规避野指针 野指针的概念 野指针就是指针指向的位置是不可知的&#xff08;随机的&#xff0c;不正确的&#xff0c;没有明确限制的&#xff09; 有关野指针的代码 指针未初始化&#xff1a; #include<stdio.h> int main…

使用 mongo2neo4j 和 SemSpect 通过各种方式进行图探索

用于可视化和探索每个 MEAN 堆栈背后的数据图的 ETL 您是否正在努力回答有关 MEANS Web 服务数据的紧急问题&#xff1f;哪里有 BI 可以快速回答“上个季度哪些亚洲的artisan.plus 用户触发了订单&#xff1f;”这个问题&#xff0c;而无需编写查询&#xff1f;使用 mongo2neo4…

深度学习每周学习总结N3(文本分类实战:基本分类(熟悉流程)、textCNN分类(通用模型)、Bert分类(模型进阶))

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 0. 总结&#xff1a;1. 前期准备环境安装 2. 文本分类基本流程a. 加载数据b.构建词典c.生成数据批次和迭代器d.定义模型及实例e. 定义…

Linux搭建hive手册

一、将hive安装包上传到NameNode节点并解压 1、删除安装MySQL时的.rpm文件 cd /opt/install_packages/ rm -rf *.rpm 2、将安装包拖进/install_packages目录 3、解压安装包 tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/softs/ 4、修改包名 cd /opt/softs mv apache-…

力扣双指针算法题目:复写零

1.题目 . - 力扣&#xff08;LeetCode&#xff09; 2.解题思路 本题要求就是对于一个数组顺序表&#xff0c;将表中的所有“0”元素都向后再写一遍&#xff0c;且我们还要保证此元素之后的元素不受到影响&#xff0c;且复写零之后此数组顺序表的总长度不可以改变&#xff0c;…

OpenCV 灰度直方图及熵的计算

目录 一、概述 1.1灰度直方图 1.1.1灰度直方图的原理 1.1.2灰度直方图的应用 1.1.3直方图的评判标准 1.2熵 二、代码实现 三、实现效果 3.1直方图显示 3.2 熵的计算 一、概述 OpenCV中的灰度直方图是一个关键的工具&#xff0c;用于分析和理解图像的灰度分布情况。直…

12 Dockerfile详解

目录 1. Dockerfile 2. Dockerfile构建过程 2.1. Dockerfile编写规则&#xff1a; 2.2. Docker执行Dockerfile的大致流程 2.3. 总结 3. Dockerfile指令 3.1. FROM 3.2. MAINTAINER 3.3. RUN 3.4. EXPOSE 3.5. WORKDIR 3.6. USER 3.7. ENV 3.8. VOLUME 3.9. ADD …

mac 11 变编译安装nginx

mac 11 变编译安装nginx 记录一次安装过程 所需要的包 pcre: https://sourceforge.net/projects/pcre/files/pcre/OpenSSL: https://www.openssl.org/source/Nginx: https://nginx.org/en/download.html如果没有pcre 和Openssl,报错如下 把pcre和Openssl 解压到nginx 目录下…

Linux高并发服务器开发(十三)Web服务器开发

文章目录 1 使用的知识点2 http请求get 和 post的区别 3 整体功能介绍4 基于epoll的web服务器开发流程5 服务器代码6 libevent版本的本地web服务器 1 使用的知识点 2 http请求 get 和 post的区别 http协议请求报文格式: 1 请求行 GET /test.txt HTTP/1.1 2 请求行 健值对 3 空…

第一次的pentest show总结

第一次的pentest show总结 前言 开始之前&#xff0c;我特别感谢TryHackMe(英)、HackTheBox(美)、zero-point security(英)、offsec(美)等平台&#xff0c;使我们能够通过网络以线上的方式学习与练习&#xff0c;打破传统线下各地区教育资源差异大的限制&#xff0c;对网络教…

03:EDA的进阶使用

使用EDA设计一个38译码器电路和245放大电路 1、38译码器1.1、查看74HC138芯片数据1.2、电路设计 2、245放大电路2.1、查看数据手册2.2、设计电路 3、绘制PCB3.1、导入3.2、放置3.3、飞线3.4、特殊方式连接GND3.5、泪滴3.6、配置丝印和划分区域3.7、添加typc接口供电 1、38译码器…

20.5.【C语言】求长度的两种方式

1.sizeof 用于测数据类型的长度的函数&#xff08;详细见第3篇&#xff09; 2.strlen 其计算长度时只有遇到\0才会停止&#xff0c;并且\0不会计算在内 如char arr[]{a,1,b}; printf("%d\n",strlen(arr)); 结果是个随机数&#xff01;strlen读内存中的数据&…

快递物流运输中的RFID智能锁控应用方案

一、物流货运管理的痛点分析 1.1 货物安全与监控难题 物流货运过程中&#xff0c;货物安全是首要关注的问题。传统的锁控方式存在诸多不足&#xff0c;例如易被撬锁、监控盲点以及难以实时追踪货物状态。据统计&#xff0c;每年因货物丢失或损坏导致的经济损失高达数十亿美元…

小白也可以部署私有化大模型知识库_私有化知识库

透过产品了解RAG技术原理&#xff0c;对未来大模型应用开发也将起到事半功倍的效果。 虽然网络上有很多此类技术文章&#xff0c;这里自己也进行一次总结&#xff0c;加深印象的同时给小伙伴做一个参考&#xff0c;多多交流。 准备 Linux服务器、windows也可以 Docker环境&…

Excel多表格合并

我这里一共有25张表格: 所有表的表头和格式都一样,但是内容不一样: 现在我要做的是把所有表格的内容合并到一起,研究了一下发现WPS的这项功能要开会员的,本来想用代码撸出来的,但是后来想想还是找其他办法,后来找到"易用宝"这个插件,这个插件可以从如下地址下载:ht…

C++基础21 二维数组及相关问题详解

这是《C算法宝典》C基础篇的第21节文章啦~ 如果你之前没有太多C基础&#xff0c;请点击&#x1f449;C基础&#xff0c;如果你C语法基础已经炉火纯青&#xff0c;则可以进阶算法&#x1f449;专栏&#xff1a;算法知识和数据结构&#x1f449;专栏&#xff1a;数据结构啦 ​ 目…

谷歌地图Google JS API 实现

demo实现 实现源码&#x1f447; // 谷歌地图Google JS API 实现 <template><div class"myMap"><gmp-map :center"center" zoom"15" map-id"ab6b6643adfa1a70"><gmp-advanced-markerv-for"(res, index) in…