开源大模型和闭源大模型,打法有何区别?

现阶段,各个公司都有自己的大模型产品,有的甚至不止一个。除了小部分开源外,大部分都选择了闭源。那么,头部开源模型厂商选择开源是出于怎样的初衷和考虑?未来大模型将如何发展?我们来看看本文的分享。

img

在对人工智能发展史的观察中,我们发现了AIGC以及它背后的大语言模型在近年高速发展的诸多偶然与必然(可回顾历史文章《关于AIGC崛起与行业发展,我有几点小观察…》

但近两年,大批大语言模型应用的涌现以及“百模大战”的兴起,却与“模型开源”这个动作密不可分。

除了开放性,现阶段的开源和闭源大模型在盈利模式、商业打法、发展策略等方面有何区别?头部开源模型厂商选择开源又是出于怎样的初衷和考虑?未来开源和闭源大模型将如何发展?下文揭晓。

一、开源和闭源大模型的差异化打法

在大众的认知中,开源软件往往指向完整共享源代码,任何人都能使用、检查、修改和分发其源代码的产品。

在计算机科学与技术发展进程中,Linux(操作系统)、Python、JavaScript(编程语言和框架)、MySQL(数据库)、Transformer(深度学习框架)等产品的开源都显得意义非凡。

开源大模型虽属开源阵营中的一员,但现阶段大多数开源的大模型并不像开源软件那样共享完整的源代码、数据集、训练过程等细节,更多属于权重方面的有限开源。

这里面有大模型开发的数据量级、训练复杂度等方面的原因。因为这层缘故,大多数开源模型更多依靠开源方来推动产品研发和迭代,社区贡献度有限。

img产品经理如何做好B端数字化?各行各业都搭上了数字化转型的顺风车,实现了行业的迅速发展。由于B端产品是为企业所提供服务的产品,那么,企业应该如何乘上数字化的顺风车呢?查看详情 >

但即便如此,它让大批开发者能在较低使用成本的基础上,根据自身实际需求进行灵活调整,并解锁更多商业场景和收益,也足以极大刺激整个产业的发展与繁荣。

闭源大模型和大多数闭源软件差异不大,通常指不对外分享源代码,仅所有者能合法访问、修改和分发,经封装后对外进行商业化变现的大模型产品。用户一般只能在付费后按既定方式使用。

区别于开源产品经常采用的“开源方主导+社区共建”的开发模式,闭源大模型高度依赖开发方的自主研发和长线运营,主要通过知识产权的价值货币化快速获取收益。

因为闭源大模型较之开源大模型存在更高的使用门槛,开发方会倾向于将大模型封装成各种标准化的产品,方便各类开发商在此基础上创建应用,并按实际消耗的tokens量、专有许可费等收费。

为了丰富业务线,目前主流的闭源大模型厂商也有基于底层模型推出AI应用,收取相应的产品订阅、调用、定制化等费用,以扩大整体营收。

两者迥异的开发形态和商业模式,决定了开源大模型前期更多通过免费/低价获客和生态合作,壮大基本盘,实现对关联业务的加持或业务场景及客源的拓展,服务于未来的财务增长。

而闭源大模型则更多采用“模型即服务”和应用拓展,直接进行商业变现,服务于当下的业绩增长。

当两者结合,共同推动了大语言模型的发展,加速着通用人工智能时代的来临。

img

二、主流玩家开源大模型的几点思考

就在最近,业内对开源和闭源大模型的讨论声不绝于耳。

孰是孰非这里不论,不过个人比较认同“我们都是受益于开源成长起来的个人和公司”这句话(摘自360创始人周鸿祎的公开发言)。

而且,在整理媒体对当下主流开源大模型掌舵人的采访时,我们发现:各家选择开源自家大模型产品,背后的商业考虑与决策依据其实挺耐人寻味。总结起来,主要包含以下几点:

1)保障技术安全与良性发展。

比如包括Meta CEO扎克伯格、Mistral创始人Arthur Mensch等在内的头部开源大模型厂商leader都有提到:模型的开源会是保障大模型技术安全,解决安全漏洞的有效措施。

而且伴随用户使用的增加,能更好地集思广益,改善模型适用性与标准性,实现良性发展。这点与以往的开源软件宗旨算是一脉相承。

2)实现产业赋能。

鉴于当前基于全栈国产化基础软硬件的平台不多,已开源的多模态本土大模型产品也少,以中国科学院自动化研究所为代表的“国家队”选择开源自研的紫东太初大模型,则更多是想通过“大模型+小数据”的形式,推动大模型对产业带来的赋能。

3)促成生态合作共赢。

作为开源大模型赛道的代表性厂商,Meta坚持开源Llama系列大模型,则很大程度上源于对未来发展的考虑。

在公开采访中,Meta CEO扎克伯格曾表示:开源对Meta AI的未来发展有利。对于整个科技领域来说,大模型的开源也显得意义深刻,能创造更多赢家。

国内方面,以智谱为代表的本土大模型厂商,通过开源ChatGLM-6B,在加速全球下载量的同时,催生了600+优秀大模型应用开源项目,此举进一步推动了产业融合和AI生态建设。

4)为商业化做准备。

虽然开源意味着很难直接大规模商业变现,但作为获客或打开知名度的手段,却效果斐然。

比如2023年成立的Mistral AI ,因发布Mistral 7B、Mistral 8X7B两大开源模型一举成名,之后再推商业化模型,已能在业内快速打开局面,近期官宣获得6.4亿美元B轮融资。

而Llama系列的开源让Meta保持在AI领域的独特优势,反哺社交、广告等业务的同时,也打开了和云服务商、AI硬件平台等合作的另一种可能。

除此之外,出于提升行业地位、扩大商业机会等考虑,也推动着不少大模型开发商选择了开源,以争取在商业生态中的竞争优势或长远发展。

三、未来开源和闭源大模型将如何共处?

目前,有人认为开源大模型和闭源大模型处在对立面,未来必将像零和博弈一般,你输我赢,此消彼长。

不过在个人看来,两者的关系未来很可能像开源软件与闭源软件一样,长期共存,各自发展。

在这其中,开源产品能达到闭源产品很难企及的用户覆盖面与创新自由度,而闭源产品能更快、直接转化为商业利益,进一步提升产品迭代速度和服务质量。

两者就像Linux与Windows,Android与iOS,虽然有竞争,但互为补充,各自在擅长的领域开疆拓土。

只是在入局者越来越多、产品越来越卷的当下,未来市场难免会经历洗牌,只保留少数头部、更具有竞争优势的选手。

这也是眼下国内外大模型厂商热心于竞争生态位或出于商业化考虑,反复切换开源和闭源赛道,或丰富业务线以保持自身优势的一大原因。

比如谷歌在推出闭源大模型Gemini Ultra的同时,发布了Gemma 2B 和7B两款开源模型产品。Mistral在推出Mistral 7B、Mistral 8X7B两大开源模型后一炮而红,新推出的旗舰版大模型Large 则为闭源产品。

出于成本压力和商业化考虑,目前开源大模型厂商和闭源大模型厂商的界限正逐渐模糊。

不过抛开这些,就整个行业来说,开源和闭源大模型的百花齐放,推动了AI上层应用生态乃至整个行业的繁荣,也为人们以较低门槛使用人工智能产品带来了便利。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/40995.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试最全面试题及答案整理(2024最新版)

1、你的测试职业发展是什么? 测试经验越多,测试能力越高。所以我的职业发展是需要时间积累的,一步步向着高级测试工程师奔去。而且我也有初步的职业规划,前3年积累测试经验,按如何做好测试工程师的要点去要求自己,不断…

Linux 压测工具---ab

安装 yum -y install httpd-tools 本文用于压测k8s集群内pod,k8s集群master可直接测试pod ip 命令: ab -n 10000 -c 100 http://10.42.8.212/ 其中,-n表示请求数,-c表示并发数,ip必须有”/“,表示此目录…

洗地机品牌哪个最好用?硬核推荐五大实力爆款洗地机

在这个忙碌的时代,家就是我们放松的港湾,但要保持它的清洁与舒适常常很不容易。每天拖着疲惫的身体回家,还要面对地板上那些难缠的灰尘、污渍,真是非常让人头疼。不过,洗地机的出现就像是给家务清洁装上了智能引擎&…

【云WAF为您的Web防御保驾护航】

在这个数字时代,网络就像是一张没有尽头的大网,将整个世界都联系在了一起。但是,在这个网络的背后,却潜藏着数不清的安全隐患。恶意攻击、数据泄漏、网站瘫痪……各种隐患就像是隐藏在暗处的毒蛇,时刻都会对没有任何防…

Redis深度解析:核心数据类型与键操作全攻略

文章目录 前言redis数据类型string1. 设置单个字符串数据2.设置多个字符串类型的数据3.字符串拼接值4.根据键获取字符串的值5.根据多个键获取多个值6.自增自减7.获取字符串的长度8.比特流操作key操作a.查找键b.设置键值的过期时间c.查看键的有效期d.设置key的有效期e.判断键是否…

Google重大更新--解读Android Auto认证4.3

Google在今年五月更新了Android Auto 4.2.2版本,而在2024年7月他们推出了Android Auto 4.3版本,这是自2023年9月以来对Android Auto 4.2版本的一次重大更新。 为了确保合规性和顺利认证,OEM和Tire1必须确保PDK组件版本与正在认证的主机的Rece…

three.js 后期处理,物体高亮

效果图 代码 引入资源文件,在初始化时创建后处理对象 // 用于边缘高亮的插件// 引入后处理扩展库EffectComposer.jsimport { EffectComposer } from "three/addons/postprocessing/EffectComposer.js";// 引入渲染器通道RenderPassimport { RenderPass }…

Kafka-服务端-网络层-源码流程

整体架构如下所示: responseQueue不在RequestChannel中,在Processor中,每个Processor内部有一个responseQueue 客户端发送的请求被Acceptor转发给Processor处理处理器将请求放到RequestChannel的requestQueue中KafkaRequestHandler取出reque…

深度解析Java世界中的对象镜像:浅拷贝与深拷贝的奥秘与应用

在Java编程的浩瀚宇宙中,对象拷贝是一项既基础又至关重要的技术。它直接关系到程序的性能、资源管理及数据安全性。然而,提及对象拷贝,不得不深入探讨其两大核心类型:浅拷贝(Shallow Copy)与深拷贝&#xf…

防爆智能手机如何解决危险环境下通信难题?

在化工厂、石油行业、矿山等危险环境中,通信安全一直是难题。传统手机因不具备防爆功能,可能引发火花、爆炸等安全风险,让工作人员在关键时刻难以及时沟通。但如今,防爆智能手机的出现彻底改变了这一现状! 安全通信&am…

手机如何充当电脑摄像头,新手使用教程分享(新)

手机如何充当电脑摄像头?随着科技的发展,智能手机已经成为我们日常生活中不可或缺的一部分。手机的摄像头除了拍摄记录美好瞬间之外,其实还有个妙用,那就是充当电脑的摄像头。手机摄像头充当电脑摄像头使用的话,我们就…

一分钟学习数据安全—自主管理身份SSI分布式加密密钥管理

在这篇之前,我们已经对SSI有了一个全局的了解。这个系列的文章可以作为一个学习笔记来参考,真正要实践其中的一些方案、协议,还需要参考专业的书籍和官方文档。作为一个SSI系列学习笔记的最后一篇,我们做一个简单的延伸&#xff0…

【中项第三版】系统集成项目管理工程师 | 第 9 章 项目管理概论① | 9.1 - 9.3

前言 第 9 章对应的内容选择题和案例分析都会进行考查,这一章节理论性较强,学习要以教材为准。本章分值预计在4-5分。 目录 9.1 PMBOK的发展 9.2 项目基本要素 9.2.1 项目基础 9.2.2 项目管理 9.2.3 项目成功的标准 9.2.4 项目、项目集、项目组合…

多态的优点

多态的优点 1、多态的优点1.1 可替换性(Substitutability)2、可扩充性(Extensibility) 2、总结 💖The Begin💖点点关注,收藏不迷路💖 1、多态的优点 在面向对象编程(OOP…

无服务器【Serverless】架构的深度剖析:组件介绍、优缺点与适用场景

🐇明明跟你说过:个人主页 🏅个人专栏:《未来已来:云原生之旅》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、云计算的发展趋势 2、无服务器计算简介 二、无服务…

红海云签约海新域集团,产业服务运营领军企业加速人力资源数字化转型

北京海新域城市更新集团有限公司(以下简称“海新域集团”)是北京市海淀国有资产投资集团有限公司一级监管企业,致力于成为国内领先的产业服务运营商。集团积极探索城市和产业升级新模式,通过对老旧、低效等空间载体重新定位规划、…

FPGA基本资源介绍

文章目录 FPGA资源介绍1.可编程输入输出单元(IOB)2.可配置逻辑块(CLB)3.数字时钟管理模块(DCM)4.嵌入式块RAM(BLOCK RAM / BRAM)4.1其他ram 5.丰富的布线资源6.底层内嵌功能单元7.内嵌专用硬核软核、硬核、以及固核的概念 FPGA资源介绍 1.可编程输入输出单元(IOB) 可编程输入…

C++视觉开发 五.答题卡识别

答题卡识别主要步骤 (1)反二值化,选项处理为前景(白色),其它处理为背景(黑色)。 (2)每个选项提取出来,计算各选项白色像素点个数。 (3)筛选出白色像素点最多的选项作为考生答案。 (4)与标准答案…

【机器学习】连续字段的特征变换

介绍 除了离散变量的重编码外,有的时候我们也需要对连续变量进行转化,以提升模型表现或模型训练效率。在之前的内容中我们曾介绍了关于连续变量标准化和归一化的相关内容,对连续变量而言,标准化可以消除量纲影响并且加快梯度下降…

年化达21%(K=1),最大回撤35%,K=3时,卡玛比最优,最大回撤20%(年化15.2%)| Quantlab5.0代码发布

原创文章第578篇,专注“AI量化投资、世界运行的规律、个人成长与财富自由"。 Quantlab5.0代码发布: 值得说明,Quantlab5与4没有继承关系,5开始的思路是: 1、尽量少封装,保留回测框架最原始的功能。…