[Day 24] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在自動駕駛中的應用

1. 簡介

自動駕駛技術是現代交通領域的一個革命性進展。通過結合人工智能(AI)、機器學習(ML)、深度學習(DL)和傳感器技術,自動駕駛汽車可以在無人干預的情況下安全駕駛。本文將詳細介紹AI在自動駕駛中的應用,並通過代碼示例解釋相關技術。

2. 自動駕駛的核心技術

自動駕駛汽車主要依賴以下技術來實現其功能:

  1. 感知:利用傳感器(如攝像頭、激光雷達、雷達和超聲波)來收集環境數據。
  2. 定位:確定汽車在地圖上的精確位置。
  3. 規劃:根據環境和目標位置規劃最佳路徑。
  4. 控制:根據規劃好的路徑控制汽車的速度和方向。

3. 感知技術

感知技術使自動駕駛汽車能夠理解其周圍環境。以下是一些主要的感知技術和代碼示例:

3.1 圖像處理

圖像處理是自動駕駛汽車感知環境的重要組成部分。通過攝像頭捕獲的圖像,AI模型可以識別行人、車輛、交通標誌等。

import cv2
import numpy as np
import tensorflow as tf# 載入預訓練的模型(例如,MobileNet)
model = tf.keras.applications.MobileNetV2(weights='imagenet')# 讀取圖像
image = cv2.imread('test_image.jpg')
image_resized = cv2.resize(image, (224, 224))# 預處理圖像
image_preprocessed = tf.keras.applications.mobilenet_v2.preprocess_input(image_resized)
image_expanded = np.expand_dims(image_preprocessed, axis=0)# 進行預測
predictions = model.predict(image_expanded)# 解碼預測結果
decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions, top=3)print(decoded_predictions)

代碼解釋

  1. 我們首先導入必要的庫,如OpenCV和TensorFlow。
  2. 載入預訓練的MobileNet模型,用於圖像分類。
  3. 讀取並調整圖像大小,使其適合模型輸入。
  4. 預處理圖像以符合模型的要求。
  5. 使用模型進行預測,並解碼預測結果以獲取可讀的分類標籤。
3.2 激光雷達點雲處理

激光雷達(LiDAR)提供高精度的三維環境數據,是自動駕駛汽車的重要傳感器。

import open3d as o3d# 讀取點雲數據
pcd = o3d.io.read_point_cloud("test_point_cloud.pcd")# 可視化點雲
o3d.visualization.draw_geometries([pcd])

代碼解釋

  1. 導入Open3D庫,用於處理和可視化點雲數據。
  2. 讀取點雲數據文件(PCD格式)。
  3. 使用Open3D的可視化工具展示點雲數據。

4. 定位技術

精確的定位是自動駕駛汽車的另一個關鍵部分。以下是一個使用GPS和IMU數據進行定位的示例:

import numpy as np# 模擬GPS和IMU數據
gps_data = np.array([[37.7749, -122.4194, 10], [37.7750, -122.4195, 10]])
imu_data = np.array([[0.1, 0.1, 0.1], [0.1, 0.1, 0.1]])# 計算位置
def calculate_position(gps_data, imu_data):positions = []for i in range(len(gps_data)):lat, lon, alt = gps_data[i]acc_x, acc_y, acc_z = imu_data[i]# 假設簡單的定位算法,實際上應用更加複雜的融合算法position = (lat + acc_x * 0.0001, lon + acc_y * 0.0001, alt + acc_z * 0.1)positions.append(position)return positionspositions = calculate_position(gps_data, imu_data)
print(positions)

代碼解釋

  1. 我們模擬了一些GPS和IMU數據。
  2. 定義一個簡單的函數calculate_position,根據GPS和IMU數據計算位置。
  3. 使用該函數計算位置,並輸出結果。

5. 規劃技術

路徑規劃使自動駕駛汽車能夠選擇最佳路徑到達目標位置。以下是一個使用A*算法進行路徑規劃的示例:

import heapq# 定義A*算法
def a_star(start, goal, grid):open_list = []heapq.heappush(open_list, (0, start))came_from = {}g_score = {start: 0}f_score = {start: heuristic(start, goal)}while open_list:_, current = heapq.heappop(open_list)if current == goal:return reconstruct_path(came_from, current)for neighbor in get_neighbors(current, grid):tentative_g_score = g_score[current] + 1if neighbor not in g_score or tentative_g_score < g_score[neighbor]:came_from[neighbor] = currentg_score[neighbor] = tentative_g_scoref_score[neighbor] = tentative_g_score + heuristic(neighbor, goal)heapq.heappush(open_list, (f_score[neighbor], neighbor))return None# 重建路徑
def reconstruct_path(came_from, current):total_path = [current]while current in came_from:current = came_from[current]total_path.append(current)return total_path[::-1]# 計算啟發式函數
def heuristic(a, b):return abs(a[0] - b[0]) + abs(a[1] - b[1])# 獲取鄰居節點
def get_neighbors(node, grid):neighbors = []for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:neighbor = (node[0] + dx, node[1] + dy)if 0 <= neighbor[0] < len(grid) and 0 <= neighbor[1] < len(grid[0]) and grid[neighbor[0]][neighbor[1]] == 0:neighbors.append(neighbor)return neighbors# 測試A*算法
grid = [[0, 1, 0, 0, 0],[0, 1, 0, 1, 0],[0, 0, 0, 1, 0],[0, 1, 1, 1, 0],[0, 0, 0, 0, 0]]start = (0, 0)
goal = (4, 4)path = a_star(start, goal, grid)
print(path)

代碼解釋

  1. 我們首先定義了A*算法,這是一種經常用於路徑規劃的搜索算法。
  2. a_star函數接受起點、終點和網格作為輸入,返回從起點到終點的最短路徑。
  3. reconstruct_path函數用於重建從起點到終點的路徑。
  4. heuristic函數計算啟發式估計,用於指導搜索過程。
  5. get_neighbors函數獲取當前節點的鄰居節點,用於擴展搜索範圍。
  6. 最後,我們測試A*算法,並輸出計算出的路徑。

6. 控制技術

控制技術使自動駕駛汽車能夠按照規劃好的路徑行駛。以下是一個基於PID控制器的簡單速度和方向控制示例:

class PIDController:def __init__(self, kp, ki, kd):self.kp = kpself.ki = kiself.kd = kdself.prev_error = 0self.integral = 0def control(self, setpoint, measured_value):error = setpoint - measured_valueself.integral += errorderivative = error - self.prev_erroroutput = self.kp * error + self.ki * self.integral + self.kd * derivativeself.prev_error = errorreturn output# 初始化PID控制器
speed_controller = PIDController(1.0, 0.1, 0.01)
steering_controller = PIDController(1.0, 0.1, 0.01)# 設定目標速度和方向
target_speed = 30  # 單位:km/h
target_direction = 0  # 單位:度# 模擬當前速度和方向
current_speed = 25
current_direction = -5# 計算控制輸出
speed_control_output = speed_controller.control(target_speed, current_speed)
steering_control_output = steering_controller.control(target_direction, current_direction)print("Speed Control Output:", speed_control_output)
print("Steering Control Output:", steering_control_output)

代碼解釋

  1. 我們定義了一個簡單的PID控制器類PIDController,其中包括比例、積分和微分項。
  2. control方法計算控制輸出,根據當前的設置點和測量值調整控制輸出。
  3. 初始化兩個PID控制器,一個用於速度控制,另一個用於方向控制。
  4. 設定目標速度和方向,並模擬當前速度和方向。
  5. 計算控制輸出並輸出結果。

7. 結論

自動駕駛汽車是一個結合了多種先進技術的系統,包括感知、定位、規劃和控制。通過利用人工智能和機器學習技術,自動駕駛汽車可以在複雜的環境中安全駕駛。本文通過多個代碼示例詳細介紹了這些技術的實現,展示了AI在自動駕駛中的應用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/40710.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线段树求区间最值问题

引言 今天主要还是练了两道题&#xff0c;是有关线段树如何去求一个区间内的最值问题的&#xff0c;我们可以用线段树来解决。 对应一个无法改变顺序的数组&#xff0c;我们想要去求一个区间内的最值&#xff0c;假设有n个结点&#xff0c;m次询问&#xff0c;暴力的解决办法…

51、基于主成分分析和聚类分析的基因表达分析(matlab)

1、主成分分析和聚类分析简介 主成分分析(Principal Component Analysis, PCA)和聚类分析(Cluster Analysis)是两种常用的数据分析方法,用于降维和数据分类。 1)主成分分析(PCA) 主成分分析是一种常用的多元统计数据分析方法,旨在通过找到数据中最重要的变量(主成…

股票分析-20240628

今日关注&#xff1a; 20240626 六日涨幅最大: ------1--------300386--------- 飞天诚信 五日涨幅最大: ------1--------300386--------- 飞天诚信 四日涨幅最大: ------1--------300386--------- 飞天诚信 三日涨幅最大: ------1--------300386--------- 飞天诚信 二日涨幅最…

基于go-gmsm静态库编写的SM2椭圆曲线公钥密码算法PHP扩展 相较于openssl-ext-sm2编译更方便 增加了密文指定排序、识别ans1编码等功能

go-ext-sm2 介绍 基于go-gmsm静态库编写的SM2椭圆曲线公钥密码算法PHP扩展 相较于openssl-ext-sm2编译更方便 增加了密文指定排序、识别ans1编码等功能 特性:非对称加密 git地址:https://gitee.com/state-secret-series/go-ext-sm2.git 软件架构 zend 常规PHP扩展结构 …

vue-org-tree搜索到对应项高亮展开

效果图&#xff1a; 代码&#xff1a; <template><div class"AllTree"><el-form :inline"true" :model"formInline" class"demo-form-inline"><el-form-item><el-input v-model"formInline.user&quo…

c++ using namespace std的作用及注意事项

在C中&#xff0c;using namespace std; 是一个常见的指令&#xff0c;它用于简化标准库&#xff08;Standard Library&#xff09;中类和函数的引用。下面我将详细解释这个指令的作用和使用时的注意事项。 作用 在c/c标准库中&#xff0c;许多类和函数的定义都在std(standar…

【Git】远程仓库操作

创建远程仓库 在官网进行注册登录&#xff1a;Gitee或Github 进入后点击新建仓库&#xff0c;默认选项创建即可 **仓库创建完成后可以看到SSH的仓库地址&#xff1a;gitgitee.com:username/test.git**或gitgithub.com:Toukensan/test.git 配置SSH公钥 在本地通过命令行创建…

js学习--制作猜数字

猜数字制作 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><script>function fun() {alert("1-100猜数字");let num Math.floor(Math.random() * 100) 1;for …

MDB-RS232 控制自动售货机MDB年龄验证设备

(以下是与台湾ICT的DCM5年龄验证设备测试数据) &#xff08;如果需要使用年龄验证设备&#xff0c;一定要记得购买MDB-RS232的PRO版本&#xff0c;也就是专业版&#xff09; 指令 HEX 代码 描述 RESET(复位) 68H 复位设备 SETUP(配置) 69H 读取年龄验证设备配置 Expa…

12个视觉艺术分类

视觉设计可以按照多种方式进行分类&#xff0c;这些分类通常基于设计的目的、风格或应用场景。本文为大家介绍12种视觉设计&#xff0c;分别是平面设计、标志设计、包装设计、用户界面设计 (UI Design)、用户体验设计 (UX Design)、插图设计、网页设计、动画设计、展览设计、环…

Python小练习05

一 绘制如下图形。 #Q1 import turtle as t def draw(n):for i in range(n):t.left(30)t.fd(100)t.left(120)t.fd(100)t.left(120)t.fd(100)t.left(120)t.fd(100)t.right(90) t.penup() t.goto(-150,20) t.speed(0) t.pendown() t.pencolor("red") t.pensize(5) draw…

CentOS搭建KMS服务器

CentOS搭建KMS服务器 一、使用git拉取vlmcsd项目并在本地编译 若还未安装git&#xff0c;使用命令yum install git -y进行安装。使用git gitgithub.com:Wind4/vlmcsd.git拉取项目。 cd vlmcsd #进入项目目录 make #进行编译二、开放防火墙端口&#xff0c;创建开机自启…

flask项目部署总结

这个部署的时候要用虚拟环境&#xff0c;cd进项目文件夹 python3 -m venv myenv source myenv/bin/activate激活 之后就安装一些库包之类的&#xff0c;&#xff08;flask&#xff0c;requests,bs4,等等&#xff09; 最重要的是要写.flaskenv文件并且pip install 一个能运行…

tls各个版本的安全性介绍

TLS&#xff08;Transport Layer Security&#xff09;协议的各个版本在安全性方面经历了逐步的演进和改进&#xff0c;以应对不断变化的网络安全威胁。以下是各主要版本的安全性概览&#xff1a; TLS 1.0&#xff1a; 发布于1999年&#xff0c;是SSL 3.0的后续版本。在其发布时…

单调栈(左小大,右小大)

①寻找每个数左边第一个比它小的数 给定一个长度为 N 的整数数列&#xff0c;输出每个数左边第一个比它小的数&#xff0c;如果不存在则输出 −1。 输入样例&#xff1a; 3 4 2 7 5 输出样例&#xff1a; -1 3 -1 2 2 从左到右遍历&#xff0c;用单调递增&#xff08;栈底到栈顶…

数据看板/可视化大屏的实际价值到底是什么?详解数据可视化的实用之处

数据驾驶舱/数据看板/可视化大屏的实际价值&#xff0c;取决于使用者的实际需求。 华而不实&#xff1f;华就是实&#xff01; 关于可视化大屏最广泛的争议&#xff0c;便是对其“华而不实”的批评&#xff0c;认为可视化大屏缺乏技术含量&#xff0c;只是一钟比较高级的“装饰…

推荐 2个功能强大的黑科技工具,真的会让你直呼卧槽

Waifu2X Waifu2x 是一个基于深度学习的开源项目&#xff0c;主要用于处理二次元动漫风格的图像。它使用卷积神经网络&#xff08;CNN&#xff09;进行超分辨率处理和降噪&#xff0c;能够将图像放大2倍或更多&#xff0c;同时显著提高清晰度和减少噪声。Waifu2x 特别针对日系漫…

小龙虾优化24种机器学习多输入单输出回归|时序预测模型

小龙虾优化24种机器学习多输入单输出回归|时序预测模型 文章目录 小龙虾优化24种机器学习多输入单输出回归|时序预测模型前言一、小龙虾优化基本原理二、优化机器学习模型1.COA-CNN-BiGRU-Attention回归模型2.基于小龙虾优化支持向量机的数据回归预测Matlab程序COA-SVM 多特征输…

还在Excel中管理您的持续改进项目吗?

对于大多数公司来说&#xff0c;Microsoft Excel是一种可靠的资源&#xff0c;它确实提供了极高的价值。然而&#xff0c;当它被用来跟踪持续改进项目时&#xff0c;它的价值就减少了。浪费时间从不同内部系统的不同报告中收集数据&#xff0c;会占用推动重要变革的时间。让我们…

使用微信开发者工具连接gitee

编写代码 打开微信开发者工具 编写小程序代码 提交代码 在微信开发者工具提交代码到gitee仓库的步骤&#xff1a; 1.在gitee创建仓库&#xff0c;得到仓库url 2.微信开发者工具设置远程仓库 点击版本管理-->点击设置-->网络和认证-->认证方式选择 使用用户名和…