14-18 2024 年影响企业 GenAI 的关键技术趋势

现在,大多数 .com 公司已于 2023 年更名为 .ai,那么价值万亿美元的问题是:接下来会发生什么?哪些关键障碍、工具、技术和方法将重塑格局

企业 AI 的不同之处在于,它专注于可衡量、可管理的输出,企业可以控制这些输出并将其品牌与之联系起来。今年将以技术工具为主,使 GenAI 克服挑战,成为一种可靠的工具,而不仅仅是潜力。

数据科学家在预测自己领域的未来方面确实很糟糕(双关语!)。因此,请以 95% 的置信区间来看待这些预测 :)

图片由 Dall-E 生成

1. 资本支出周期的转变

现在,没有一家企业没有投资 GenAI。今年某个时候,这些投资将开始产生回报。新技术的资本支出 (capex) 产品周期通常遵循 18 个月的周期:18 个月投资,18 个月寻找市场,然后决定是进一步发展以达到顶峰还是投资其他地方。

构建 GenAI PoC 很容易,但将其投入生产却极具挑战性,因为存在幻觉、治理、缺乏评估标准和架构混乱等问题。

到 2024 年秋季,我们将看到公司试图为去年春季开始嵌入 AI 的所有产品找到产品与市场的契合度。这意味着有些公司会错失良机,而精益求精的人才会脱颖而出。这意味着那些没有找到产品与市场契合度的公司将面临有关投资和团队的艰难决策。

这是否意味着 GenAI 泡沫将要破裂?远非如此。然而,我们将看到企业进行整合,不仅关注 PoC 项目,还将关注今年秋季末投入生产的项目。而那些没有达到要求的企业要么拿出资金,要么撤资。

2.推理优化

到目前为止,大多数 GenAI PoC 最容易被忽视的领域是运行这些基于 LLM 的大型推理的成本。它看起来可能单价很小,但对于一家拥有几百万次推理调用的中型公司来说,成本很快就会累积起来。

报道芯片市场的新闻通讯 SemiAnalysis 在 2 月份估计,OpenAI 处理 GPT-3.5 提示花费了 0.0036 美元。按照这个速度,如果谷歌使用 GPT-3.5 来回答其搜索引擎每秒收到的约 32 万个查询,其营业收入将从每年 555 亿美元降至 195 亿美元。2 月份,谷歌表示,节省处理成本是其将 Bard 聊天机器人建立在其 LaMDA 大型语言模型的相对较小版本上的原因。

今年的重点将是开发推理优化方法。该领域将通过考虑各种因素来平衡成本效益,以提供推理服务,例如准确性、ROI 预测、底层本地部署与云基础架构与 SaaS 模型、LLM 的大小,以及它应该是 RAG 还是微调或自定义调整模型。

这是一个复杂的问题,人工智能领导层需要提前考虑,以免在将 GenAI 投入生产后遭遇账单冲击。请关注正在为加速计算开发的新框架,这些框架可以更快地运行模型或降低计算要求。

3. 再见“提示词优化”(欢迎回来 微调)

提示词调整是一种很好的建立基线的技术,但还不足以构建生产级解决方案。提示词调整是一种零样本学习方法,它不会调整张量的值。这意味着它不会学习任何特定于您的企业数据集的内容。毕竟,如果您的聊天机器人听起来和其他人一样,为什么有人会更喜欢你而不是他们呢?是什么让您的 GenAI 与众不同?

虽然提示词调整可以快速体现价值而无需训练任何模型,但它也存在固有的局限性。最终,你会得到一个推理成本过高且过于通用的解决方案。微调可以解决这个问题。

对于任何想要使用 GenAI 为客户增加价值的公司来说,它都需要带来其数据的独特性。而实现这一目标的方法要么是 RAG(Retriever Augmented Generation),要么是微调。RAG 与微调之间的争论是错误的,因为它取决于用例和您拥有的数据类型。

对于生成式问答来说,RAG 是更好的选择,而 Fine-Tuning 则适合其他问题,例如 text2sql。

虽然 Prompt Tuning 会作为一种方法继续存在,但它只是 GenAI 流程中的一个步骤,而不是流程本身的结束。对于任何拥有大量数据的企业来说,使用 LLM 嵌入作为基础模型,然后在此基础上构建自定义或微调模型更有意义,这种模型更轻量、更便宜、更好。

留意为“ AI中间件”创建的新空间,该空间具有更高的抽象框架,可以轻松微调模型(如SuperKnowa)。

4. SLM,MLM和VSLM的兴起   

你不需要用大炮来杀死蚊子!

继续之前的主题,如果您知道如何针对您的数据调整或训练较小的模型,您可以获得更好、更便宜的模型。这将引发人们对 SLM(小型语言模型)和 MLM(中型语言模型)的新兴趣,这些模型通常具有少于 7B 的参数,并且可以轻松安装在单个 GPU 上。

使用较大的模型进行实验不仅成本高昂,而且速度也很慢。在 20B LLM 上运行实验需要很长时间。另一个关键驱动因素是 GPU 短缺,这种情况将持续到 2024 年。

我预计,我们将看到甚至极小的语言模型(参数少于 10 亿)的兴起,这些模型可以安装在边缘设备上,将 GenAI 嵌入硬件中,并快速进行自定义训练,而无需 GPU。目前已有用于各种 NLP 任务的可嵌入NLP 库,这些库内部使用 2 亿到 3 亿个参数模型。

5. 多 - 多 - 多

多模型、多模式和多云 — 这些是您今年会多次听到的术语。为任何企业协调这些众多选项都会产生一系列新问题。今年,AI 领导者需要解决一些挑战:

  • 企业希望在其架构中支持多少个不同的 LLM?(请记住,由于 GPU 短缺,仅加载和推断 34B 参数的 LLM 就需要 6 个 GPU)。我们是想支持所有模型,还是选择更多较小的模型,或者几个中型模型,或者一个大模型和一个小模型?
  • 在单一云上运行既有风险又昂贵,那么我们如何管理跨多个云与本地 LLM 的工作负载?通常,本地模型部署从长远来看可以节省大量资金,并且可以更好地控制治理和产出。
  • 多模式——将文本与图像、视频和音频相结合将是一个值得关注的主题。这些多模式模型的部署仍然是一个需要工具开发的领域。

6. 阿基里斯·希尔——“人工智能治理”

如果说 GenAI 有一个领域让高管们夜不能寐,那就是 AI 治理。他们不知道他们的聊天机器人应用程序何时会散播错误信息,他们将不得不支付罚款(如加拿大航空案),或者何时会说出仇恨内容并被下架(如谷歌),或者如何遵守欧盟法律等新法规。

所有公司都想知道的答案是,一旦投入生产,它会做什么。尚未解决的问题是“如何衡量”它。没有简单的指标或解决方案来衡量幻觉,尤其是当涉及到没有普遍基本事实的特定领域数据(如政策)时。另一个挑战是合规性工具,就像审计目的一样。让黑匣子变得开放和可预测是一个挑战,它阻碍了许多公司将他们的 GenAI PoC 推向生产。

预计在私人和公共空间中都会有大量关于这个问题的讨论。希望美国国会能通过一些法律,并让行业采用一套可接受的通用标准(类似于制药药物试验的标准)。当然,这其中很多都是一厢情愿的想法,在此之前,像WatsonX.Governance这样的工具将是必不可少的。

7. 绝地归来(又名数据科学家)

去年,看起来成为一名人工智能工程师就是从事人工智能的全部需要(一些误导性的新报告声称,成为一名人工智能工程师可以为你提供 90 万美元的薪水,不含工资可以达到 40 万美元)。

今年最后一个但可能很难实现的变化是,人们认识到仍然非常需要数据科学家来推动 GenAI 从潜力到效力。

首先,两者有什么区别?传统的 ML 需要训练模型,数据科学家会利用他们的统计和算法专业知识来使模型适合您的用例。有了 LLM,您已经有一个预先训练好的模型,所以人们认为您不再需要这样做了。无论你需要什么,都可以用 Prompt Tuning 来完成,这是一种智能英语写作。因此,AI 工程师的数量激增,他们不太关注科学部分,而更专注于 ML-Ops 工程,以在应用程序内部配置、集成和部署 GenAI。

事实证明,现实情况要复杂一些,尤其是对于企业 GenAI 而言。以 RAG 应用程序为例。为几十个文档构建 RAG 很容易,但当文档数量达到几百万时,您需要了解检索器和重新排序算法(如 KNN、编码器、BM-25)深度的技能。对于另一个用例(如 text2sql),您需要微调模型的技能(即 PEFT、Beam Search 等)。此外,所有 GenAI 应用程序都需要评估模型的技能,并提出适合该数据集和用例的正确统计指标(如 NDCG、Fleiss-Kappa)。所有这些都意味着统计和 ML 算法的核心技能仍然非常重要,仅仅把这些框框放在一起是不够的。

因此,数据科学家将以绝地武士的身份回归,让 GenAI 焕发活力。核心统计技能将成为您快速提供高精度 GenAI 解决方案的关键因素。

期待意外

人工智能的魅力在于它的不可预测性(这不是缺陷,而是一种特性,因为一切都建立在概率之上)。包括 Sam Altman 在内的所有人都未能预测到当前的 GenAI 浪潮。我们第一次看到这一点是在 2012 年视觉模型的高潮和对自动驾驶汽车的炒作中。现在,LLM又迎来了一次繁荣。

所有企业都应该预料到,他们自己的计划可能会因为一些表现优于预期的新模型(如 Llama3 或 GPT5)或一些完全不同、出乎意料的东西而被打乱。新的模型、方法、数据集或服务器可能会扰乱局面。无论好坏,GenAI 中总是会出现意想不到的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/40179.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端Web开发HTML5+CSS3+移动web视频教程 Day4 CSS 第2天

P44 - P 四个知识点: 复合选择器 CSS特性 背景属性 显示模式 复合选择器 复合选择器仍然是选择器,只要是选择器,作用就是找标签。复合选择器就是把基础选择器进行组合使用。组合了之后就可以在大量的标签里面更快更精准地找标签了。找…

Qt中线程的使用

目录 1 .QThread重要信号和函数 1.1 常用共用成员函数 1.2信号和槽函数 1.3静态函数 1.4 任务处理函数 2.关于QThread的依附问题: 3.关于connect连接 4.QThread的使用 5.线程池QThreadPool 5.1. 线程池的原理 5.2.QRunable类 5.3. QThreadPoo…

安装维修制氮设备的注意指南

制氮设备在许多工业领域都发挥着重要作用,无论是确保生产过程中的氮气供应,还是维持设备的稳定运行,正确的安装和维修都是关键。以下是一些重要的注意事项,帮助您顺利完成制氮设备的安装与维修工作。 一、安装注意事项 (一)选址与…

VUE自定义新增、复制、删除dom元素

功能需求,能灵活新增或删除一个dom元素,在此dom元素中还存在能灵活新增、删除的dom元素。实现后功能图如下: 点击新增策略,能新增整个策略dom 实现思路:定义一个数量和一个数组,然后使用循环遍历展示内容&a…

将iStoreOS部署到VMware ESXi变成路由器

正文共:888 字 19 图,预估阅读时间:1 分钟 前面把iStoreOS部署到了VMware workstation上(将iStoreOS部署到VMware Workstation)。如果想把iStoreOS直接部署到ESXi上,你会发现转换镜像不能直接生成OVF或者OV…

css+js实现导航栏色块跟随滑动+点击后增加样式

这篇文章,我给大家分享一个导航菜单的效果。用cssJS实现,效果如图: 本例实现效果:当鼠标移动到其他菜单项时,会有个背景色块跟随鼠标横向平滑移动。当鼠标点击后,被点击的菜单名称文字字体会加粗。 现在&…

《数字图像处理与机器视觉》案例四 基于分水岭算法的粘连物体的分割与计数

一、引言 分水岭算法(Watershed Algorithm),是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影…

SpringBoot 集成Swagger在线接口文档 接口注解

介绍 Swagger接口文档是一种自动生成、描述、调用和可视化的RESTful风格Web服务接口文档的工具。它通过一系列的规范和自动化工具&#xff0c;极大地简化了后端开发人员与前端开发人员之间的协作。 依赖 <!--swagger--> <dependency><groupId>io.springfo…

「媒体邀约」天津媒体资源?媒体邀约宣传报道

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 媒体宣传加速季&#xff0c;100万补贴享不停&#xff0c;一手媒体资源&#xff0c;全国100城线下落地执行。详情请联系胡老师。 天津拥有丰富的媒体资源&#xff0c;利用这些资源进行有效…

ICMP协议详解及尝试用ping和tracert捕抓ICMP报文

一、ICMP协议 1.1、定义 ICMP&#xff08;Internet Control Message Protocol&#xff0c;互联网控制消息协议&#xff09;是一个支持IP层数据完整性的协议&#xff0c;主要用于在IP主机、路由器之间传递控制消息。这些控制消息用于报告IP数据报在传输过程中的错误&#xff0c…

C++ 语法

一、头文件与源文件 头文件用于声明函数,类似于java中service层的接口; 源文件用于实现头文件函数,相当于java中serviceImpl层的实现类; 定义接口 实现接口 使用接口 二、指针概述 定义与使用 定义一个指针p用于存a变量的内存地址,即指针就是地址; 解引用可以获取或修改…

40岁以上的中年人很难找到工作

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 你们有没有发现&#xff0c;90%的40岁以上的中年人&#xff0c;为了多挣钱&#xff0c;几乎除了吃饭和睡觉之外&#xff0c;都在拼命加班劳作&#xff0c;只要一停下来&#xff0c;心里就有一种内疚感&#xff0c;…

【Elasticsearch】Elasticsearch动态映射与静态映射详解

文章目录 &#x1f4d1;前言一、Elasticsearch 映射概述1.1 什么是映射&#xff1f;1.2 映射的分类 二、动态映射2.1 动态映射的定义2.2 动态映射的优点2.3 动态映射的缺点2.4 动态映射的应用场景2.5 动态映射的配置示例 三、静态映射3.1 静态映射的定义3.2 静态映射的优点3.3 …

机器学习简介--NLP(二)

机器学习简介 机器学习简介机器学习例子机器学习分类有监督学习有监督学习的应用 无监督学习 机器学习常见概念数据集k折交叉验证过拟合欠拟合评价指标 机器学习简介 机器学习例子 问题&#xff1a; 2&#xff0c;4&#xff0c;6&#xff0c;8&#xff0c;&#xff1f;&#…

【CV炼丹师勇闯力扣训练营 Day22:§7 回溯1】

CV炼丹师勇闯力扣训练营 代码随想录算法训练营第22天 回溯法其实就是暴力查找,回溯的本质是穷举&#xff0c;穷举所有可能&#xff0c;然后选出我们想要的答案&#xff0c;一般可以解决如下几种问题&#xff1a; 组合问题&#xff1a;N个数里面按一定规则找出k个数的集合切割…

Ubuntu18.04新安装--无网络连接、重启黑屏解决教程

一、安装Ubuntu Ubuntu安装需要U盘作为启动盘&#xff0c;在目前教新的电脑中选中GPT作为分区&#xff0c;制作启动盘&#xff0c;其中在安装双系统Ubuntu时&#xff0c;以自定义格式作为存储空间。详细安装过程以以及如何分区请参考下列链接&#xff1a;内含详细安装过程&…

VS Code 常用快捷键大全

Visual Studio Code 是目前最好用的代码编辑器之一。它提供了许多开箱即用的功能以及丰富的第三方扩展&#xff0c;本文将分享常用的 VS Code 快捷键&#xff0c;助你提高开发效率&#xff01; 代码导航 跳转指定行&#xff1a;快速跳转到文件中的指定行&#xff0c;只需按下快…

Unity 数据持久化【PlayerPrefs】

1、数据持久化 文章目录 1、数据持久化PlayerPrefs基本方法1、PlayerPrefs概念2、存储相关3、读取相关4、删除数据思考 信息的存储和读取 PlayerPrefs存储位置1、PlayerPrefs存储的数据在哪个位置2、PlayerPrefs 数据唯一性思考 排行榜功能 2、Playerprefs实践1、必备知识点-反…

解决 Layout Inspector无法查看Component Tree 布局层级信息 | Android Studio Koala

问题描述 Tool -> Layout Inspector 显示下图&#xff0c;无法生成.li文件查看Component Tree&#xff0c;变成实时的Preview并功能点击操作&#xff0c;跟模拟器一样。 原因&#xff1a;默认勾选了"Enable embedded Layout Inspector"&#xff0c;启用了嵌入式…

SpringCloud进阶篇

文章目录 网关快速入门创建模块引入依赖修改启动类配置路由路由过滤(一般不用) 自定义GlobalFilter登录校验登录校验过滤器 微服务获取用户信息保存用户信息到请求头拦截器获取用户信息 OpenFeign传递用户信息配置共享添加共享配置拉取共享配置 配置热更新添加配置到Nacos配置热…