- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、前期工作
本文将采用CNN实现多云、下雨、晴、日出四种天气状态的识别。较上篇文章,本文为了增加模型的泛化能力,新增了Dropout层并且将最大池化层调整成了平均池化层。
🦾我的环境:
- 语言环境:Python3.8
- 编译器:Jupyter Lab
- 深度学习环境:
- TensorFlow2
1. 设置GPU
如果使用的是CPU可以忽略这步
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')
2. 导入数据
import matplotlib.pyplot as plt
import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "data/p3/weather_photos/"data_dir = pathlib.Path(data_dir)
3. 查看数据
数据集一共分为cloudy
、rain
、shine
、sunrise
四类,分别存放于weather_photos
文件夹中以各自名字命名的子文件夹中。
image_count = len(list(data_dir.glob('*/*.jpg')))print("图片总数为:",image_count)
图片总数为: 1125
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))
二、数据预处理
1. 加载数据
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
batch_size = 32
img_height = 180
img_width = 180
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 900 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 225 files for validation.
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise']
2. 可视化数据
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
3. 再次检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 180, 180, 3)
(32,)
Image_batch
是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。Label_batch
是形状(32,)的张量,这些标签对应32张图片
4. 配置数据集
shuffle()
:打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456prefetch()
:预取数据,加速运行
函数原型:
tf.keras.preprocessing.image_dataset_from_directory(directory,labels="inferred",label_mode="int",class_names=None,color_mode="rgb",batch_size=32,image_size=(256, 256),shuffle=True,seed=None,validation_split=None,subset=None,interpolation="bilinear",follow_links=False,
)
prefetch()
功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()
将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch()
,CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用prefetch()
可显著减少空闲时间:
- cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
三、构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels)
,包含了图像高度、宽度及颜色信息。不需要输入batch size
。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)
即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape
。
num_classes = 5"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3 layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3layers.Dropout(0.3), layers.Flatten(), # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取layers.Dense(num_classes) # 输出层,输出预期结果
])model.summary() # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling (Rescaling) (None, 180, 180, 3) 0
_________________________________________________________________
conv2d (Conv2D) (None, 178, 178, 16) 448
_________________________________________________________________
average_pooling2d (AveragePo (None, 89, 89, 16) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 87, 87, 32) 4640
_________________________________________________________________
average_pooling2d_1 (Average (None, 43, 43, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 41, 41, 64) 18496
_________________________________________________________________
dropout (Dropout) (None, 41, 41, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 107584) 0
_________________________________________________________________
dense (Dense) (None, 128) 13770880
_________________________________________________________________
dense_1 (Dense) (None, 5) 645
=================================================================
Total params: 13,795,109
Trainable params: 13,795,109
Non-trainable params: 0
_________________________________________________________________
四、编译
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
五、训练模型
epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
29/29 [==============================] - 6s 58ms/step - loss: 1.5865 - accuracy: 0.4463 - val_loss: 0.5837 - val_accuracy: 0.7689
Epoch 2/10
29/29 [==============================] - 0s 12ms/step - loss: 0.5289 - accuracy: 0.8295 - val_loss: 0.5405 - val_accuracy: 0.8133
Epoch 3/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2930 - accuracy: 0.8967 - val_loss: 0.5364 - val_accuracy: 0.8000
Epoch 4/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2742 - accuracy: 0.9074 - val_loss: 0.4034 - val_accuracy: 0.8267
Epoch 5/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1952 - accuracy: 0.9383 - val_loss: 0.3874 - val_accuracy: 0.8844
Epoch 6/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1592 - accuracy: 0.9468 - val_loss: 0.3680 - val_accuracy: 0.8756
Epoch 7/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0836 - accuracy: 0.9755 - val_loss: 0.3429 - val_accuracy: 0.8756
Epoch 8/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0943 - accuracy: 0.9692 - val_loss: 0.3836 - val_accuracy: 0.9067
Epoch 9/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0344 - accuracy: 0.9909 - val_loss: 0.3578 - val_accuracy: 0.9067
Epoch 10/10
29/29 [==============================] - 0s 11ms/step - loss: 0.0950 - accuracy: 0.9708 - val_loss: 0.4710 - val_accuracy: 0.8356
六、模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
思考:
1.最大池化与平均池化的区别是什么呢?2.学习率是不是越大越好,优化器该如何设置呢?
-
最大池化与平均池化的区别:
- 最大池化(Max Pooling):在卷积神经网络中,最大池化是一种常用的池化操作,它通过在输入特征图上滑动一个小窗口,每次只保留窗口内的最大值。这种操作有助于减少数据的空间维度,同时保留最重要的特征信息。最大池化通常用于保留特征图中的显著特征,因为它认为这些特征对于后续的分类或其他任务最为重要。
- 平均池化(Average Pooling):与最大池化不同,平均池化在滑动窗口内取所有值的平均值。这种方法相对平滑,可以减少过拟合的风险,因为它不会过分强调任何一个特征点,而是考虑了窗口内所有特征的平均表现。平均池化在某些情况下可能不如最大池化那么有效,因为它可能会丢失一些重要的局部特征。
-
学习率与优化器设置:
- 学习率是神经网络训练中一个非常重要的超参数,它决定了在每次迭代中权重更新的幅度。学习率并不是越大越好,因为:
- 如果学习率太高,可能会导致模型在训练过程中震荡,甚至发散,无法收敛到一个好的解。
- 如果学习率太低,训练过程可能会非常缓慢,或者陷入局部最优解,无法达到全局最优。
- 优化器的选择和设置通常依赖于具体问题和数据集的特性。以下是一些常见的优化器和它们的一些特点:
- SGD(随机梯度下降):最基本的优化器,适用于大多数问题,但可能需要仔细调整学习率和其他超参数。
- Adam:自适应矩估计优化器,它结合了动量和RMSprop的优点,通常不需要太多的手动调整,是一个比较通用的选择。
- RMSprop:一种自适应学习率优化器,对于非平稳目标特别有用。
- AdaGrad:适用于处理稀疏数据,但可能会遇到学习率逐渐减小的问题。
- AdaDelta:改进自AdaGrad,解决了学习率逐渐减小的问题。
在实际应用中,通常需要通过实验来确定最佳的学习率和优化器设置。此外,还可以使用学习率衰减策略,如指数衰减、阶梯衰减或余弦退火等,来帮助模型更好地收敛。
- 学习率是神经网络训练中一个非常重要的超参数,它决定了在每次迭代中权重更新的幅度。学习率并不是越大越好,因为: