【Python数据分析及环境搭建】:教程详解1(第23天)

系列文章目录

  1. Python进行数据分析的优势
  2. 常用Python数据分析开源库介绍
  3. 启动Jupyter服务
  4. Jupyter Notebook的使用

文章目录

  • 系列文章目录
  • 前言
    • 学习目标
    • 1. Python进行数据分析的优势
    • 2. 常用Python数据分析开源库介绍
      • 2.1 NumPy
      • 2.2 Pandas
      • 2.3 Matplotlib
      • 2.4 Seaborn
      • 2.5 Sklearn
      • 2.6 Jupyter Notebook
    • 3 启动Jupyter服务
      • 3.1 设置jupyter服务密码
      • 3.2 生成Jupyter配置文件并配置
      • 3.3 启动jupyter
    • 4 Jupyter Notebook的使用
      • 4.1 Jupyter Notebook的界面
      • 4.2 Jupyter Notebook常用快捷键
      • 4.3 Jupyter Notebook中使用Markdown
    • 总结


前言

本教程详解了Python做数据分析的优势,Python数据分析常用开源库,如何启动jupyter notebook,如何使用jupyter notebook。

学习目标

  • 了解Python做数据分析的优势
  • 知道Python数据分析常用开源库
  • 知道如何启动jupyter notebook
  • 知道如何使用jupyter notebook

1. Python进行数据分析的优势

在这里插入图片描述

  • Python作为当下最为流行的编程语言之一,可以独立完成数据分析的各种任务

    • 功能强大,在数据分析领域里有海量开源库,并持续更新

    • 是当下热点——机器学习/深度学习 领域最热门的编程语言

    • 除数据分析领域外,在爬虫,Web开发等领域均有应用

  • 与Excel,PowerBI,Tableau等软件比较

    • Excel有百万行数据限制,PowerBI ,Tableau在处理大数据的时候速度相对较慢

    • Excel,Power BI 和Tableau 需要付费购买授权

    • Python作为热门编程语言,功能远比Excel,PowerBI,Tableau等软件强大

    • Python跨平台,Windows,MacOS,Linux都可以运行

  • 与R语言比较

    • Python在处理海量数据的时候比R语言效率更高
    • Python的工程化能力更强,应用领域更广泛,R专注于统计与数据分析领域
    • Python在非结构化数据(文本,音视频,图像)和深度学习领域比R更具有优势
    • 在数据分析相关开源社区,python相关的内容远多于R语言

2. 常用Python数据分析开源库介绍

2.1 NumPy

  • NumPy(Numerical Python) 是Python数据分析必不可少的第三方库,NumPy的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型,使其具备了构造复杂数据类型的能力。
  • 是一个运行速度非常快的数学库,主要用于数组计算,包含:
    • 高性能科学计算和数据分析的基础包
    • ndarray,多维数组,具有矢量(向量)运算能力,快速、节省空间
    • 矩阵运算,无需循环,可完成类似Matlab(商业数学软件)中的矢量运算
    • 用于读写磁盘数据的工具以及用于操作内存映射文件的工具

2.2 Pandas

  • Pandas是一个强大的分析结构化数据的工具集,Pandas丰富的API能够更加灵活、快速的对数据进行清洗处理以及分析

  • Pandas在数据处理上具有独特的优势:

    • 底层是基于NumPy构建的,所以运行速度特别的快
    • 有专门的处理缺失数据的API
    • 具有强大而灵活的分组、聚合、转换功能
  • Pandas利器之==Series==

    • Series是一种类似于一维数据的数据结构
    • 是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即行索引)组成
    • 仅由一组数据也可产生简单的Series对象
  • Pandas利器之==DataFrame==

    • DataFrame是一种表格型的数据结构,既有行索引也有列索引,可以简单的把DataFrame理解为一张数据表

    • 包含有一组或多组有序的列(Series),每列可以是不同的值类型(数值、字符串、布尔型等)

2.3 Matplotlib

  • Matplotlib 是一个功能强大的数据可视化开源Python库
  • Python中使用最多的图形绘图库
  • 可以创建静态,动态和交互式的图表

2.4 Seaborn

  • Seaborn是一个Python数据可视化开源库
  • 建立在matplotlib之上,并集成了pandas的数据结构
  • Seaborn通过更简洁的API来绘制信息更丰富,更具吸引力的图像
  • 面向数据集的API,与Pandas配合使用起来比直接使用Matplotlib更方便

2.5 Sklearn

  • scikit-learn 是基于 Python 语言的机器学习工具
    • 简单高效的数据挖掘和数据分析工具
    • 可供大家在各种环境中重复使用
    • 建立在 NumPy ,SciPy(Scientific Python) 和 matplotlib 上

2.6 Jupyter Notebook

  • Jupyter Notebook是一个开源Web应用程序,使用Jupyter Notebook可以创建和共享
    • 代码
    • 数学公式
    • 可视化图表
    • 笔记文档
  • Jupyter Notebook用途
    • 数据清理和转换
    • 统计分析
    • 数据可视化
    • 机器学习等
  • Jupyter Notebook是数据分析学习和开发的首选开发环境

3 启动Jupyter服务

3.1 设置jupyter服务密码

  • 进入python的命令终端, 在linux终端执行 python 命令

    在这里插入图片描述

  • 输入以下代码设置密码, 记录生成的密码字符串

    from notebook.auth import passwd
    passwd() # 设置自己的密码,然后两次输入确认生成加密字符串, 密码设置为123456即可
    

    在这里插入图片描述

3.2 生成Jupyter配置文件并配置

  • 在linux终端执行以下命令, 生成jupyter_notebook_config.py配置文件

    jupyter notebook --generate-config
    

    在这里插入图片描述

  • 打开jupyter_notebook_config.py配置文件, 在最后添加以下内容即可

    # 打开文件
    vim ~/.jupyter/jupyter_notebook_config.py
    # 添加以下内容
    c.NotebookApp.allow_remote_access = True  #允许远程访问
    c.NotebookApp.allow_root = True          #允许root访问
    c.NotebookApp.ip='*'                     # 所有ip皆可访问  
    c.NotebookApp.password = '上面复制的那个字符串'    
    c.NotebookApp.open_browser = False       # 禁止自动打开浏览器  
    c.NotebookApp.port =8888                 # 端口
    c.NotebookApp.notebook_dir = '/' 
    

    在这里插入图片描述

3.3 启动jupyter

  • linux终端输入 jupyter notebook 命令启动

    jupyter notebook
    

    在这里插入图片描述

  • 在本地浏览器中输入 192.168.88.100:8888, 进入jupyter的web界面
    在这里插入图片描述

    在这里插入图片描述

  • 注意: 不要关闭jupyter服务

    在这里插入图片描述

4 Jupyter Notebook的使用

4.1 Jupyter Notebook的界面

  • 新建notebook文档

    注意:Jupyter Notebook 文档的扩展名为.ipynb,与我们正常熟知的.py后缀不同

    在这里插入图片描述

  • 新建文件之后会打开Notebook界面

    在这里插入图片描述

  • 菜单栏中相关按钮功能介绍:

    Jupyter Notebook的代码的输入框和输出显示的结果都称之为cell,cell行号前的 * ,表示代码正在运行

在这里插入图片描述

4.2 Jupyter Notebook常用快捷键

Jupyter Notebook中分为两种模式:命令模式和编辑模式

  • 两种模式通用快捷键

    • Shift+Enter,执行本单元代码,并跳转到下一单元
    • Ctrl+Enter,执行本单元代码,留在本单元
  • 按ESC进入命令模式

    在这里插入图片描述

    • Y,cell切换到Code模式
    • M,cell切换到Markdown模式
    • A,在当前cell的上面添加cell
    • B,在当前cell的下面添加cell
    • 双击D:删除当前cell
  • 编辑模式:按Enter进入,或鼠标点击代码编辑框体的输入区域

    在这里插入图片描述

    • 撤销:Ctrl+Z(Mac:CMD+Z)
    • 补全代码:变量、方法后跟Tab键
    • 为一行或多行代码添加/取消注释:Ctrl+/(Mac:CMD+/)

4.3 Jupyter Notebook中使用Markdown

  • 在命令模式中,按M即可进入到Markdown编辑模式

  • 使用Markdown语法可以在代码间穿插格式化的文本作为说明文字或笔记

  • Markdown基本语法:标题和缩进

    在这里插入图片描述

  • 效果如下图所示

在这里插入图片描述

总结

  • 了解Python做数据分析的优势

    • Python可以独立高效的完成数据分析相关的全部工作
  • 知道Python数据分析常用开源库

    • Pandas
    • Numpy
    • Matplotlib
    • Seaborn
    • sklearn
  • 会启动和使用jupyter notebook

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38875.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[AHK V2]鼠标悬停展开窗口,鼠标离开折叠窗口

演示鼠标悬停窗口标题栏则展开窗口,鼠标离开窗口标题栏则折叠窗口。 ;作者:sunwind ;日期:2024年6月30日11:36:08 ;脚本:演示鼠标悬停窗口标题栏则展开窗口,鼠标离开窗口标题栏则折叠窗口。 MyGui : Gui() mytext:MyG…

第一 二章 小车硬件介绍-(全网最详细)基于STM32智能小车-蓝牙遥控、避障、循迹、跟随、PID速度控制、视觉循迹、openmv与STM32通信、openmv图像处理、smt32f103c8t6

第一篇-STM32智能小车硬件介绍 后续章节也放这里 持续更新中,视频发布在小B站 里面。这边也会更新。 B站视频合集: STM32智能小车V3-STM32入门教程-openmv与STM32循迹小车-stm32f103c8t6-电赛 嵌入式学习 PID控制算法 编码器电机 跟随 小B站链接:https://www.bilib…

启航IT世界:高考后假期的科技探索之旅

随着高考的落幕,新世界的大门已经为你们敞开。这个假期,不仅是放松身心的时光,更是为即将到来的IT学习之旅打下坚实基础的黄金时期。以下是一份专为你们准备的IT专业入门预习指南,希望能助你们一臂之力。 一:筑基篇&a…

STM32F407ZGT6驱动TFT屏ILI9341(硬件SPI)

硬件连接 我购买的是ili9341,2.8inch,带触摸 开发板是野火stm32f407霸天虎 LCD模块STM32单片机VCCDC5V/3.3VGNDGNDSDI(MOSI)PB5SDO(MISO)PB4LEDPB13SCKPB3DC/RSPB14RSTPB12CSPB15触摸连接T_IRQPB1T_DOPB2T_DINPF11T_CSPC5T_CLKPB0 初始化 本次使用的是硬件SPI1&…

Bootstrap 缩略图

Bootstrap 缩略图 引言 Bootstrap 是一个流行的前端框架,它提供了一套丰富的组件和工具,帮助开发者快速构建响应式和移动优先的网页。缩略图(Thumbnails)是 Bootstrap 中的一种组件,用于展示图片或其他媒体内容,通常与标题和文本描述一起使用,形成一个整洁的布局。本文…

新版MinIO安装,附带问题处理和SSL设置(巨详细)

前些天发现了一个人工智能学习网站,通俗易懂,风趣幽默,最重要的屌图甚多,忍不住分享一下给大家。点击跳转到网站。 下面开始: 前往官网下载需要的二进制文件 wget https://dl.min.io/server/minio/release/linux-am…

element ui中的scss语法理解

摘录至 导读 首先来看一个bem命名示例 .el-message-box{} .el-message-box__header{} .el-message-box__header--active{}如果使用已经封装好的bem方法的话,那么可以写成 include b(message-box) {include e(header) {include m(active);} }接下来我们来看一下b…

【FPGA】Verilog:全减器与半减器 | Full Subtractor | Half Subtractor

0x00 全减器(Full Subtractor) 减法器是用于减法运算的逻辑电路,与不包含借位的半减法器不同。 全减法器因为包含借位的产生与否,所以具备完整的减法功能。 输出由差 和借位 组成:

JUC基础学习

1.Java JUC简介 2.volatile关键字-内存可见性 3.原子变量-CAS算法 4.ConcurrentHashMap锁分段机制

什么是滴答定时器?

滴答定时器(Tick Timer)是一种关键的硬件组件,用于生成固定时间间隔的信号。这些信号通常称为“滴答”(tick),是操作系统和应用程序的时间管理基础。滴答定时器的应用范围广泛,从简单的定时任务…

Java中的数据加密与安全传输

Java中的数据加密与安全传输 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一下在Java中如何实现数据加密与安全传输。 随着互联网的普及和网络…

C++学习/复习18----迭代器/反向迭代器及在list/vector中的应用、list与vector模拟实现复习

迭代器是一个对象,可以循环访问 C 标准库容器中的元素,并提供对各个元素的访问。 C 标准库容器全都提供迭代器,以便算法可以采用标准方式访问其元素,而不必考虑用于存储元素的容器类型。 一、反向迭代器类 基于普通迭代器构建反…

使用gitlab的CI/CD实现logseq笔记自动发布为单页应用

使用gitlab的CI/CD实现logseq笔记自动发布为单页应用 使用gitlab的CI/CD实现logseq笔记自动发布为单页应用如何实现将logseq的笔记发布成网站使用 logseq-publish-docker 实现手动发布使用gitlab的CI/CD实现自动发布过程中的问题及解决参考资料 使用gitlab的CI/CD实现logseq笔记…

[AIGC] 常用的OLAP数据库:为数据分析提供强大的支持

导语:在大数据时代,数据分析成为了企业决策的重要依据。为了高效地处理和分析海量的数据,OLAP数据库应运而生。本文将介绍几种常用的OLAP数据库,为数据分析提供强大的支持。 一、Snowflake Snowflake是一种云原生的OLAP数据库&a…

win10和mac之间如何共享文件夹

我用的mac版本是 macOS Ventura ,其他版本的操作可能略有不同 在 macOS Ventura 上设置共享文件夹 打开“系统设置”:点击屏幕左上角的苹果菜单 () > 系统设置。选择“通用”:在左侧边栏中找到并点击“通用”。选择“共享”&#xff1…

第二届重庆国际渔业博览会

The 2th Chongqing International Fisheries & Seafood Expo 时间:2024年10月25-27日 地点:重庆国际博览中心 同期举办:第十六届中国(重庆)火锅美食文化节暨第九届中国(重庆)国际火锅产业博览会 展会规模: 展出…

利用Java的`java.util.concurrent`包优化多线程性能

利用Java的java.util.concurrent包优化多线程性能 一、引言 在Java的多线程编程中,性能优化是一个永恒的话题。随着多核CPU的普及和计算任务的日益复杂,多线程编程已经成为提高应用程序性能的重要手段。然而,多线程编程也带来了一系列的问题…

(论文版)深度学习 | 基于 VGG16-UNet 语义分割模型的猫狗图像提取研究

Hi,大家好,我是半亩花海。本实验本项目基于 VGG16-UNet 架构,利用 Labelme 标注数据和迁移学习,构建高效准确的猫狗图像分割模型。通过编码器-解码器结构(特征提取-上采样)提升分割精度,适应不同…

VBA数据库解决方案第十二讲:如何判断数据库中数据表是否存在

《VBA数据库解决方案》教程(版权10090845)是我推出的第二套教程,目前已经是第二版修订了。这套教程定位于中级,是学完字典后的另一个专题讲解。数据库是数据处理的利器,教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…

第11章 规划过程组(11.6规划进度管理)

第11章 规划过程组(二)11.6规划进度管理,在第三版教材第385页;#软考中级##中级系统集成项目管理师# 文字图片音频方式 第一个知识点:主要输出 1、进度管理计划 准确度 定义活动持续时间估算的可接受区间&#xff0…