YOLOv8改进 | 主干网络 | C2f融合动态卷积模块ODConv


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


在卷积神经网络中,传统的训练方法是在每一层学习一个单一的静态卷积核。然而,最新的研究通过学习多个卷积核的线性组合并利用输入依赖的注意力进行加权,这种方法称为动态卷积,它可以提高轻量级CNN的准确性,同时保持高效的推理。尽管如此,目前的研究仅考虑了卷积核数量这一维度的动态性而忽略了卷积核的空间大小、输入和输出通道数等其他三个维度。为了解决这个问题,研究者提出了全维度动态卷积(ODConv),这是一种更为通用和优雅的动态卷积设计ODConv采用一种新颖的多维注意力机制和并行策略,能够在卷积层的卷积核空间的所有四个维度上学习互补的注意力。ODConv可以作为一个常规卷积的替代品,被集成到许多CNN架构中。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录

1. 原理

2. 将C2f_ODConv添加到YOLOv8代码

2.1 C2f_ODConv代码实现

2.2 更改init.py文件

2.3 新增yaml文件

2.4 注册模块

2.5 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:OMNI-DIMENSIONAL DYNAMIC CONVOLUTION——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

全维动态卷积 (ODConv) 是一种广义动态卷积设计,它通过结合多维注意力机制扩展了动态卷积的概念。以下是 ODConv 背后主要原理的详细解释:

ODConv 的关键原理:

动态卷积基础知识

传统卷积神经网络 (CNN) 使用静态卷积核,这意味着相同的核应用于所有输入样本。相比之下,动态卷积使用多个卷积核的组合,每个核都由依赖于输入特征的注意力机制加权。这使得卷积操作依赖于输入。

现有动态卷积的局限性

现有的动态卷积方法,如 CondConv 和 DyConv,仅在核空间的一个维度(核的数量)上应用动态属性。这忽略了卷积核的另外三个维度:空间大小、输入通道数和输出通道数。

  1. 多维注意力机制: ODConv 通过引入多维注意力机制解决了这一限制。它不仅针对卷积核数量学习和应用注意力权重,还针对每个卷积核的空间大小、输入通道和输出通道学习和应用注意力权重。这确保了基于输入特征对卷积核进行更全面、更细粒度的动态调整。

  2. 并行注意力策略: ODConv 并行计算四种类型的注意力(针对空间大小、输入通道、输出通道和卷积核数量)。然后将这些注意力结合起来调节卷积核,增强网络中卷积操作的特征提取能力。

  3. 效率和性能: 通过利用更详细和多样化的注意力机制,ODConv 可以用更少的参数实现更好的性能。它显示了各种 CNN 架构(轻量级和大型)的显著准确性改进,而无需大幅增加模型大小。

  4. 泛化和应用: ODConv 可以集成到许多现有的 CNN 架构中,作为常规卷积的直接替代品。它不仅可以改进分类任务,还可以很好地转移到其他任务,例如对象检测。

示意图比较:

  • 现有方法:

CondConv 和 DyConv 为每个内核计算单个注意力标量,从而对内核的所有过滤器进行统一调整。

  • ODConv:

为内核空间的不同维度计算多个注意力,从而可以对卷积内核进行更细致入微和有效的调制。

实施概述:

注意力机制:

  • 空间注意力:捕捉空间相关特征。

  • 通道注意力:调整每个输入通道的权重。

  • 过滤器注意:调节每个过滤器的输出特征。

  • 内核注意:根据输入特征在多个内核中进行选择。

结果:

  • ODConv 在 ImageNet 和 MS-COCO 等数据集上针对各种 CNN 主干显示出显着的准确性改进。

  • 与其他动态卷积方法和注意模块相比,它表现出卓越的性能,同时参数效率更高。

总之,ODConv 通过结合全面的多维注意机制增强了动态卷积方法,从而在各种 CNN 架构中实现了更好的性能和效率。

2. 将C2f_ODConv添加到YOLOv8代码

2.1 C2f_ODConv代码实现

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的__all__中添加“C2f_ODConv”

class Attention(nn.Module):def __init__(self, in_planes, out_planes, kernel_size=3, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):super(Attention, self).__init__()attention_channel = max(int(in_planes * reduction), min_channel)self.kernel_size = kernel_sizeself.kernel_num = kernel_numself.temperature = 1.0self.avgpool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Conv2d(in_planes, attention_channel, 1, bias=False)self.bn = nn.BatchNorm2d(attention_channel)self.relu = nn.ReLU(inplace=True)self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)self.func_channel = self.get_channel_attentionif in_planes == groups and in_planes == out_planes:  # depth-wise convolutionself.func_filter = self.skipelse:self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)self.func_filter = self.get_filter_attentionif kernel_size == 1:  # point-wise convolutionself.func_spatial = self.skipelse:self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)self.func_spatial = self.get_spatial_attentionif kernel_num == 1:self.func_kernel = self.skipelse:self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)self.func_kernel = self.get_kernel_attentionself._initialize_weights()def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)if isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def update_temperature(self, temperature):self.temperature = temperature@staticmethoddef skip(_):return 1.0def get_channel_attention(self, x):channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return channel_attentiondef get_filter_attention(self, x):filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return filter_attentiondef get_spatial_attention(self, x):spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)spatial_attention = torch.sigmoid(spatial_attention / self.temperature)return spatial_attentiondef get_kernel_attention(self, x):kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)return kernel_attentiondef forward(self, x):x = self.avgpool(x)x = self.fc(x)# x = self.bn(x) # 在外面我提供了一个bn这里会报错x = self.relu(x)return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)class ODConv2d(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=1, dilation=1, groups=1,reduction=0.0625, kernel_num=4):super(ODConv2d, self).__init__()in_planes = in_planesself.in_planes = in_planesself.out_planes = out_planesself.kernel_size = kernel_sizeself.stride = strideself.padding = paddingself.dilation = dilationself.groups = groupsself.kernel_num = kernel_numself.attention = Attention(in_planes, out_planes, kernel_size, groups=groups,reduction=reduction, kernel_num=kernel_num)self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes // groups, kernel_size, kernel_size),requires_grad=True)self._initialize_weights()if self.kernel_size == 1 and self.kernel_num == 1:self._forward_impl = self._forward_impl_pw1xelse:self._forward_impl = self._forward_impl_commondef _initialize_weights(self):for i in range(self.kernel_num):nn.init.kaiming_normal_(self.weight[i], mode='fan_out', nonlinearity='relu')def update_temperature(self, temperature):self.attention.update_temperature(temperature)def _forward_impl_common(self, x):# Multiplying channel attention (or filter attention) to weights and feature maps are equivalent,# while we observe that when using the latter method the models will run faster with less gpu memory cost.channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)batch_size, in_planes, height, width = x.size()x = x * channel_attentionx = x.reshape(1, -1, height, width)aggregate_weight = spatial_attention * kernel_attention * self.weight.unsqueeze(dim=0)aggregate_weight = torch.sum(aggregate_weight, dim=1).view([-1, self.in_planes // self.groups, self.kernel_size, self.kernel_size])output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups * batch_size)output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))output = output * filter_attentionreturn outputdef _forward_impl_pw1x(self, x):channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)x = x * channel_attentionoutput = F.conv2d(x, weight=self.weight.squeeze(dim=0), bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups)output = output * filter_attentionreturn outputdef forward(self, x):return self._forward_impl(x)class Bottleneck_ODConv(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = ODConv2d(c_, c2, k[1][0], 1, groups=g)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C2f_ODConv(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck_ODConv(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))

ODConv(Omni-Dimensional Dynamic Convolution)在处理图像时的主要步骤可以总结为以下几个阶段,每个阶段都利用其独特的多维度注意力机制来增强图像处理效果:

1. 特征提取 (Feature Extraction)

  • 输入:原始图像或图像的特征图。

  • 操作:通过卷积层提取图像的初始特征。

  • ODConv 特性:使用多个静态卷积核获取初步的图像特征。

2. 多维度注意力机制 (Multi-Dimensional Attention Mechanism)

  • 输入:初步提取的特征图。

  • 操作

    • 计算多维度注意力权重

      • 空间注意力 (Spatial Attention):为卷积核的空间维度分配权重,捕捉空间相关特征。

      • 通道注意力 (Channel Attention):为卷积核的输入通道分配权重,捕捉通道间的依赖关系。

      • 滤波器注意力 (Filter Attention):为卷积核的输出通道分配权重,增强输出特征的表达能力。

      • 核选择注意力 (Kernel Attention):为多个卷积核分配权重,选择最适合当前输入特征的卷积核组合。

    • 组合注意力权重:将上述注意力权重结合起来,动态调整卷积核参数。

3. 动态卷积运算

  • 输入:经过注意力机制调整的卷积核和输入特征图。

  • 操作

    • 应用动态卷积:使用调整后的卷积核进行卷积运算,生成新的特征图。

    • 输出特征图:动态卷积后产生的特征图包含了更丰富和更准确的特征信息。

4. 特征融合 (Feature Fusion)

  • 输入:动态卷积后产生的特征图。

  • 操作:将不同层次的特征图进行融合,进一步增强图像特征。

  • ODConv 特性:通过多层次的动态卷积特征融合,提升图像表示的能力。

5. 高层任务 (High-Level Tasks)

  • 输入:经过特征融合的图像特征图。

  • 操作:将特征图输入到高层任务模块,如分类、检测、分割等任务中。

  • ODConv 特性:由于特征图经过了多维度注意力机制的增强和动态卷积的处理,ODConv在高层任务中表现出更高的精度和效果。

6. 后处理 (Post-Processing)

  • 输入:高层任务的输出结果。

  • 操作:对输出结果进行必要的后处理,如非极大值抑制、边缘修正等,以得到最终的图像处理结果。

  • ODConv 特性:由于ODConv在特征提取和特征融合阶段已经提升了图像特征的质量,后处理阶段能够更高效地处理图像结果。

总结

ODConv 处理图像的主要步骤包括特征提取、多维度注意力机制、动态卷积运算、特征融合、高层任务和后处理。通过在卷积运算中引入多维度的动态注意力机制,ODConv 能够更全面和准确地提取和表示图像特征,从而在各种图像处理任务中表现出色。

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 新增yaml文件

关键步骤三:在 \ultralytics\ultralytics\cfg\models\v8下新建文件 yolov8_ODConv.yaml并将下面代码复制进去

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_ODConv, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_ODConv, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channels: 1024 # max_channels# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channels: 1024 # max_channels# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
max_channels: 512 # max_channels# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
max_channels: 768 # max_channels# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
max_channels: 512 # max_channels

2.4 注册模块

关键步骤四:在parse_model函数中进行注册,添加C2f_ODConv,

2.5 执行程序

在train.py中,将model的参数路径设置为yolov8_c2f_ODConv.yaml的路径

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_c2f_ODConv.yaml')  # build from YAML and transfer weights# Train the model
model.train(device = [3], batch=16)

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

https://pan.baidu.com/s/1bLvDgIs9leo6ZCCRZ-X93w?pwd=h4u4

提取码: h4u4 

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

改进后的GFLOPs

5. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

6. 总结

ODConv(Omni-Dimensional Dynamic Convolution)的主要原理是通过引入多维度注意力机制来动态调整卷积核参数,从而在卷积神经网络中实现更灵活和精确的特征提取。它通过计算并应用空间注意力、通道注意力、滤波器注意力和核选择注意力,全面地调整卷积核在各个维度上的权重。这种多维度的动态调整机制使得ODConv能够根据输入图像的特征动态选择最合适的卷积核组合,从而在各类高层视觉任务(如图像分类、目标检测和图像分割)中实现显著的性能提升,同时保持较高的参数效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38794.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#中的时间数据格式化详解与应用示例

文章目录 1、基本概念基本格式化方法 2、实用的时间格式化方法格式化日期格式化时间格式化时间戳解析日期时间字符串 3、实际应用4、应用示例结论 在软件开发中,时间数据是无处不在的。无论是用户登录时间、数据备份时间,还是日志记录,都需要…

复兴社开展金融知识普及活动

复兴社自成立以来,始终致力于推动全国经济发展、实现共同富裕。金融知识的普及是实现这一目标的重要环节。为此,复兴社在全国范围内开展了一系列金融知识普及活动,旨在提升贫困地区人民的金融素养,助力他们实现经济自立和发展。 复…

【Emacs Verilog mode保姆级的使用指南】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

vision mamba-yolov8:结合Vmamba的yolov8目标检测改进实现

1.vision mamba结构与原理 Mamba成功的关键在于S6模型,该模型为NLP任务设计,通过选择性扫描空间状态序列模型,将二次复杂度降低至线性。但由于视觉信号(如图像)的无序性,Mamba的S6模型不能直接应用&#xf…

SQLAlchemy(alembic)和Flask-SQLAlchemy入门教程

SQLAlchemy 是 Python 生态中最流行的 ORM 类库,alembic 用来做 OMR 模型与数据库的迁移与映射,Flask-SQLAlchemy 是 Flask 的扩展,可为应用程序添加对 SQLAlchemy 的支持,简化 SQLAlchemy 与 Flask 的使用。 一.SQLAlchemy 和 a…

GraphPad Prism生物医学数据分析软件下载安装 GraphPad Prism轻松绘制各种图表

Prism软件作为一款功能强大的生物医学数据分析与可视化工具,其绘图功能尤为突出。该软件不仅支持绘制基础的图表类型,如直观明了的柱状图、展示数据分布的散点图,以及描绘变化趋势的曲线图,更能应对复杂的数据呈现需求&#xff0c…

Excel保存时弹出“请注意,您的文档的部分内容可能包含文档检查器无法删除的个人信息”

前言 Excel保存时弹出“请注意,您的文档的部分内容可能包含文档检查器无法删除的个人信息”,本节会介绍如何查看无法删除的个人信息是什么,以及如何关闭该提示窗口 一、关闭弹窗提醒 1、点击文件 – 选项 2、点击选择信任中心 – 信任中心…

高斯过程的数学理解

目录 一、说明 二、初步:多元高斯分布 三、 线性回归模型与维度的诅咒 四、高斯过程的数学背景 五、高斯过程的应用:高斯过程回归 5.1 如何拟合和推理高斯过程模型 5.2 示例:一维数据的高斯过程模型 5.3 示例:多维数据的高斯过程模…

C#——Property属性详情

属性 属性(Property)是类(class)、结构体(structure)和接口(interface)的成员,类或结构体中的成员变量称为字段,属性是字段的扩展,使用访问器&am…

【漏洞复现】Atlassian Confluence RCE(CVE-2023-22527)

产品简介 Atlassian Confluence 是一款由Atlassian开发的企业团队协作和知识管理软件,提供了一个集中化的平台,用于创建、组织和共享团队的文档、知识库、项目计划和协作内容。是面向大型企业和组织的高可用性、可扩展性和高性能版本。 0x02 漏洞概述 …

<电力行业> - 《第12课:配电(2)》

5 配网的指标 配电网与广大用户紧密联系,所以配电网是否合格还是十分重要的。 评判配电网的标准,主要有四个指标: 供电可靠性:供电可靠性是指针对用户连续供电的可靠程度。网损率:网损率可定义为电力网的电能损耗量与…

HarmonyOS Next开发学习手册——Native XComponent

场景介绍 Native XComponent是XComponent组件提供在Native层的实例,可作为JS层和Native层XComponent绑定的桥梁。XComponent所提供的NDK接口都依赖于该实例。接口能力包括获取Native Window实例、获取XComponent的布局/事件信息、注册XComponent的生命周期回调、注…

.net8 Syncfusion生成pdf/doc/xls/ppt最新版本

新建控制台程序 添加包Syncfusion.Pdf.Net.Core包&#xff0c;当前官方的版本号为26.1.39 直接上代码 Syncfusion.Pdf.PdfDocument pdfDocument new Syncfusion.Pdf.PdfDocument(); for (int i 1; i < 10; i) {var page pdfDocument.Pages.Add();PdfGraphics graphics…

销量位列第一!强力巨彩LED单元板成绩斐然

据全球知名科技研究机构Omdia《LED显示产品出货分析-中国-2023》报告显示&#xff0c;2023年强力巨彩LED显示屏销量与单元板产品销量均位列第一&#xff0c;其品牌和市场优势可见一斑。 厦门强力巨彩自2004年成立之初&#xff0c;便以技术创新和严格品控为核心竞争力&#xff0…

Redis慢查询

Redis慢查询 目录 Redis慢查询慢查询配置慢日志操作返回参数介绍 Redis的慢查询就是当命令执行时间超过预定的阈值后将这条命令记录下来&#xff0c;与MySQL的功能类似 慢查询配置 默认阈值是10毫秒&#xff0c;即10000微秒 临时修改阈值为20毫秒 127.0.0.1:6379> confi…

汽车零部件材料耐候性测试氙光太阳辐射系统试验箱

概述 汽车零部件等领域的材料耐候性测试是一项关键的质量控制环节&#xff0c;它关乎汽车部件在各种气候条件下的性能表现和寿命。塑料件光照老化实验箱&#xff0c;即氙灯老化试验箱&#xff0c;在其中扮演着至关重要的角色。通过模拟自然环境中的光照、温度、湿度等条件&…

哈希表(C++实现)

文章目录 写在前面1. 哈希概念2. 哈希冲突3. 哈希函数4.哈希冲突解决4.1 闭散列4.1.1 线性探测4.1.2 采用线性探测的方式解决哈希冲突实现哈希表4.1.3 二次探测 4.2 开散列4.2.2 采用链地址法的方式解决哈希冲突实现哈希表 写在前面 在我们之前实现的所有数据结构中(比如&…

分享一个用于深入分析【大模型LLM】工作原理的工具

背景 LLM Transparency Tool 是一个用于深入分析和理解大型语言模型&#xff08;LLM&#xff09;工作原理的工具&#xff0c;旨在增加这些复杂系统的透明度。它提供了一个交互式界面&#xff0c;用户可以通过它观察、分析模型对特定输入&#xff08;prompts&#xff09;的反应…

Java案例找素数(三种方法)

目录 一&#xff1a;问题&#xff1a; 二&#xff1a;思路分析&#xff1a; 三&#xff1a;具体代码&#xff1a; 四&#xff1a;运行结果&#xff1a; 一&#xff1a;问题&#xff1a; 二&#xff1a;思路分析&#xff1a; 三&#xff1a;具体代码&#xff1a; Ⅰ&#xf…

硬件开发笔记(二十三):贴片电阻的类别、封装介绍,AD21导入贴片电阻原理图封装库3D模型

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/140110514 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…