深入理解二分法

前言

二分法(Binary Search)是一种高效的查找算法,广泛应用于计算机科学和工程领域。它用于在有序数组中查找特定元素,其时间复杂度为 O(log n),显著优于线性搜索的 O(n)。本文将深入介绍二分法的原理、实现及其应用场景,并提供一个详细的C语言实现示例。

二分法的基本思想

二分法通过将搜索空间逐步减半来定位目标值。其基本步骤如下:

  1. 初始化:定义搜索范围的起始点(left)和终点(right)。
  2. 查找中点:计算中间位置的索引(mid)。
  3. 比较中点值:将中点位置的值与目标值进行比较:
    • 如果中点值等于目标值,则搜索成功。
    • 如果中点值小于目标值,目标值必然位于中点右侧,将左边界更新为 mid + 1。
    • 如果中点值大于目标值,目标值必然位于中点左侧,将右边界更新为 mid - 1。
  4. 重复步骤 2 和 3:直到找到目标值或搜索范围为空。

二分法的实现

以下是一个用C语言编写的二分法实现示例:

#include <stdio.h> // 二分查找函数 int binarySearch(int arr[], int size, int target) { int left = 0; int right = size - 1; while (left <= right) { int mid = left + (right - left) / 2; if (arr[mid] == target) { return mid; // 找到目标值,返回索引 } else if (arr[mid] < target) { left = mid + 1; // 目标值在右半部分 } else { right = mid - 1; // 目标值在左半部分 } } return -1; // 未找到目标值 
} 
int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; int size = sizeof(arr) / sizeof(arr[0]); int target = 7; int result = binarySearch(arr, size, target); if (result != -1) { printf("目标值 %d 在数组中的索引为 %d\n", target, result); } else { printf("目标值 %d 不在数组中\n", target); } return 0; 
}

示例解释

  1. 定义函数binarySearch 函数接收三个参数:有序数组 arr、数组大小 size 以及目标值 target
  2. 初始化:定义左右边界 leftright
  3. 计算中点:在循环中计算中点索引 mid
  4. 比较并调整边界:根据 arr[mid]target 的比较结果调整 leftright
  5. 返回结果:找到目标值返回索引,未找到返回 -1。

输出结果

目标值 7 在数组中的索引为 6

二分法的应用场景

  1. 有序数组查找:二分法用于在有序数组中查找特定元素,如在词典中查找单词、数据库索引查找等。
  2. 二分查找变体:用于查找满足特定条件的最左或最右位置,如在排序数组中查找第一个大于等于某个值的元素。
  3. 数学求解:二分法可用于求解方程的根,如牛顿迭代法和黄金分割法等。

二分法的优缺点

优点

  • 高效性:二分法的时间复杂度为 O(log n),在大数据集上比线性搜索更高效。
  • 简单性:二分法算法逻辑简单,易于实现和理解。

缺点

  • 有序要求:二分法要求数据是有序的,需先对数据进行排序,这可能会增加额外的时间开销。
  • 适用范围:不适用于链表等非连续存储结构,因为无法直接访问中间元素。

总结

二分法是一种高效且广泛应用的搜索算法,适用于有序数据的查找。理解和掌握二分法,对于提升算法效率和解决实际问题具有重要意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机语音识别控制蓝牙通信

基于单片机语音识别控制&蓝牙控制 1、Arduino单片机语音控制1.1 直连1.2 蓝牙无线连接1.3 部分核心程序1.4 实物演示 2、51单片机语音控制2.1 直连2.2 蓝牙无线连接2.3 部分核心程序2.4 实物演示 3、STM32单片机语音控制3.1 直连3.2 蓝牙无线连接3.3 部分核心程序3.4 实物演…

器件频频更换为哪桩

曾想象&#xff0c;在一家大型研发型企业里有如下案例&#xff1a; 硬件工程师设计电路选择了器件库中的某器件&#xff0c;在批量试产产品时&#xff0c;却发现没有库存&#xff0c;即时申请采购&#xff0c;却发现货期相当长&#xff0c;一时难以采购&#xff0c;甚至根本不…

填志愿选专业,文科男生如何选专业?

又到了高考分数出炉&#xff0c;无数学子收获喜悦的季节&#xff0c;在分数刚出炉时&#xff0c;很多学生表现的异常兴奋&#xff0c;于他们而言&#xff0c;这么多年的努力终于有了收获&#xff0c;自己该考虑选择什么专业了。而毫不夸张的说&#xff0c;很多人在拿到专业目录…

HarmonyOS开发探索:使用Snapshot Insight分析ArkTS内存问题

识别内存问题 当怀疑应用存在内存问题的时候&#xff0c;首先使用DevEco Profiler的Allocation Insight来度量内存在问题场景下的大小变化以及整体趋势&#xff0c;初步定界问题出现的位置&#xff08;Native Heap/ArkTS Heap/dev等&#xff09;。 在初步识别内存问题出现的位置…

CentOS中使用SSH远程登录

CentOS中使用SSH远程登录 准备工作SSH概述SSH服务的安装与启动建立SSH连接SSH配置文件修改SSH默认端口SSH文件传输 准备工作 两台安装CentOS系统的虚拟机 客户机&#xff08;192.168.239.128&#xff09; 服务器&#xff08;192.168.239.129&#xff09; SSH概述 Secure S…

Mustango——音乐领域知识生成模型探索

Mustango&#xff1a;利用领域知识的音乐生成模型 论文地址&#xff1a;https://arxiv.org/pdf/2311.08355.pdf 源码地址&#xff1a;https://github.com/amaai-lab/mustango 论文题为**“**利用音乐领域知识开发文本到音乐模型’Mustango’”。它利用音乐领域的知识从文本指…

K 近邻、K-NN 算法图文详解

1. 为什么学习KNN算法 KNN是监督学习分类算法&#xff0c;主要解决现实生活中分类问题。根据目标的不同将监督学习任务分为了分类学习及回归预测问题。 KNN&#xff08;K-Nearest Neihbor&#xff0c;KNN&#xff09;K近邻是机器学习算法中理论最简单&#xff0c;最好理解的算法…

钉钉开放AI生态战略的真正价值到底是什么?很多人都没看懂

来源&#xff1a; 首席数智官 hello 大家好&#xff0c;我们是数字化领军者都在看的首席数智官。 关注我&#xff0c;每天给你讲一个商业案例。 今天我们要给你讲的是&#xff1a;钉钉开放AI大模型生态的战略意义到底是什么&#xff1f; 「谁先赢得苹果&#xff0c;谁就赢得…

AI大模型日报#0701:Meta发布LLM Compiler、扒一扒Sora两带头人博士论文

导读&#xff1a;AI大模型日报&#xff0c;爬虫LLM自动生成&#xff0c;一文览尽每日AI大模型要点资讯&#xff01;目前采用“文心一言”&#xff08;ERNIE-4.0-8K-latest&#xff09;生成了今日要点以及每条资讯的摘要。欢迎阅读&#xff01;《AI大模型日报》今日要点&#xf…

09 - matlab m_map地学绘图工具基础函数 - 绘制区域填充、伪彩色、加载图像和绘制浮雕效果的有关函数

09 - matlab m_map地学绘图工具基础函数 - 绘制区域填充、伪彩色、加载图像和绘制浮雕效果的有关函数 0. 引言1. 关于m_pcolor2. 关于m_image3. 关于m_shadedrelief4. 关于m_hatch5. 结语 0. 引言 本篇介绍下m_map中区域填充函数&#xff08;m_hatch&#xff09;、绘制伪彩色图…

数据库连接池满问题

概述 当数据库连接池满时&#xff0c;可能会导致新的数据库连接请求无法被处理&#xff0c;进而影响应用程序与数据库的交互。以下是针对数据库连接池满问题的详细分析和解决策略&#xff1a; 问题分析 连接泄漏&#xff1a;应用程序在使用完数据库连接后没有正确地关闭连接&…

2.2章节python的变量和常量

在Python中&#xff0c;变量和常量有一些基本的概念和用法&#xff0c;但需要注意的是&#xff0c;Python本身并没有内置的“常量”类型。然而&#xff0c;程序员通常会遵循一种约定&#xff0c;即使用全部大写的变量名来表示常量。 一、变量 在Python中&#xff0c;变量是一…

唯一ID:雪花算法介绍与 Go 语言实现

介绍 snowflake 雪花算法可以在不依赖数据库的情况下&#xff0c;生成全局唯一的ID。雪花算法生成的ID是一个64位的整数&#xff0c;它由以下4部分组成: 时间戳&#xff1a;占用41位&#xff0c;精确到毫秒级&#xff0c;用于记录时间戳&#xff0c;差值形式可以使用69年。数…

数据库设计规范详解

一、为什么需要数据库设计 1、我们在设计数据表的时候&#xff0c;要考虑很多问题。比如: (1) 用户都需要什么数据?需要在数据表中保存哪些数据? (2) 如何保证数据表中数据的 正确性&#xff0c;当插入、删除、更新的时候该进行怎样的 约束检査 ?. (3) 如何降低数据表的 数据…

每天一个数据分析题(三百八十五)- 回归模型

在回归模型中&#xff0c;下列哪一项在权衡欠拟合&#xff08;under-fitting&#xff09;和过拟合&#xff08;over-fitting&#xff09;中影响最大&#xff1f; A. 多项式阶数 B. 更新回归参数w时&#xff0c;使用的是协方差矩阵求逆还是梯度下降 C. 使用常数项 D. 以上都…

python导入未找到tensorrt,No module named ‘tensorrt‘

(2024.7.1) 这个错误可能比较少见&#xff0c;是因为本人先装了tensorrt 10.1&#xff08;能够正常运行&#xff09;&#xff0c;后面又装了nvidia-tensorrt 7&#xff0c;后面不想用7了就把7卸了用回10&#xff0c;结果即使同一版本的tensorrt和nvidia-tensorrt都装了&#x…

毫米波雷达深度学习技术-2.1~2.2深度度量学习和成对方法

2 深度度量学习 有几种雷达应用程序旨在对一组预定义的类别进行分类&#xff0c;例如不同的人类活动或手势。然而&#xff0c;在实际环境中&#xff0c;存在的类不仅仅是预定义的类&#xff0c;这就把问题变成了一个开放集的分类任务。开放集分类意味着网络应该能够检测输入是否…

[AIGC] StarRocks 快速了解

星石数据库&#xff08;StarRocks&#xff09;是一种高性能、分布式的列式存储数据库系统&#xff0c;旨在为大规模数据分析提供快速和可靠的解决方案。它由StarRocks团队于2015年开始开发&#xff0c;最初是由中国电子科技集团公司&#xff08;CETC&#xff09;内部项目&#…

Chapter 8 Feedback

Chapter 8 Feedback 这一章我们介绍feedback 反馈运放的原理. 负反馈是模拟电路强有力的工具. 8.1 General Considerations 反馈系统如下图所示 Aolamp open-loop gain即开环增益. Aolxo/xi β \beta β 是 feedback factor, 注意方向. β x f x o \beta\frac{x_{f}}{x_{o…

Python内置函数enumerate 将可迭代对象组合成索引序列列举出数据和数据下表

enumerate 是一个内置的 Python 函数&#xff0c;用于将一个可迭代对象&#xff08;如列表、元组、字符串等&#xff09;组合为一个索引序列&#xff0c;同时列出数据和数据下标。 参数说明&#xff1a; enumerate(iterable, start0) 接受两个参数&#xff1a; iterable&…