算法金 | Transformer,一个神奇的算法模型!!


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

抱个拳,送个礼

在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。

今个儿我们将通过五个阶段,逐步深入讲解自注意力机制,帮助大侠一窥其原理和应用,成功实现变身(装 X )

第一阶段:自注意力机制基础

在处理语言和文字时,我们经常需要理解一个句子中的单词是如何相互关联的。例如,在句子“猫追着老鼠跑”中,我们需要知道“猫”是追的主体,“老鼠”是被追的对象。传统的方法在理解这些关系时有一些困难,特别是当句子变得很长时。自注意力机制是一种新的方法,可以更好地理解句子中单词之间的关系,无论句子有多长。

自注意力机制的核心思想是:每个单词都能“注意到”句子中的其他单词,并根据这些单词来调整自己。这有点像我们在读一篇文章时,会注意到一些关键的词句来帮助我们理解文章的整体意思。

第二阶段:自注意力机制的工作原理

在自注意力机制中,每个单词会看向句子中的其他单词,并计算一个注意力得分。这些得分表示每个单词对其他单词的关注程度。这个过程可以理解为每个单词都在问自己:“我应该关注哪些单词?”

计算注意力得分

以句子“我喜欢吃苹果”为例:

  • “我”计算它对“喜欢”、“吃”和“苹果”的注意力得分。
  • 每个单词的得分会被转换成一个概率,表示它在句子中有多重要。

注意力得分会被一种叫做 softmax 的方法转换成概率。这种方法确保所有的得分加起来等于 1,这样我们就可以知道每个单词的重要性。例如:

  • “我”可能对“喜欢”的关注度是 0.4,对“吃”的关注度是 0.3,对“苹果”的关注度是 0.3。
  • 这些得分表示“我”最关注的是“喜欢”,其次是“吃”和“苹果”。

生成新表示

每个单词会根据这些概率得分,重新组合句子中的信息,生成新的表示。这就像我们在阅读一篇文章时,会根据每句话的重要性来总结文章的核心内容。

防失联,进免费知识星球,直达算法金 AI 实验室 https://t.zsxq.com/ckSu3

更多内容,见免费知识星球

第三阶段:查询、键和值

在自注意力机制中,每个单词都被表示为三个向量:查询(Query)、键(Key)和值(Value)。这些向量帮助我们计算注意力得分,并生成新的单词表示。

查询(Query)

查询向量表示我们希望了解的单词。每个单词都有一个查询向量,用于计算它与其他单词的关系。

键(Key)

键向量表示句子中每个单词的特征。查询向量会与键向量进行对比,计算出注意力得分。

值(Value)

值向量表示句子中每个单词的具体内容。注意力得分会作用于值向量,以生成新的单词表示。

示例

以句子“我喜欢吃苹果”为例:

  • “我”的查询向量会与“喜欢”、“吃”和“苹果”的键向量进行对比,计算出它们的注意力得分。
  • 这些得分会用于加权“喜欢”、“吃”和“苹果”的值向量,生成“我”的新表示。

多头注意力机制

为了更好地捕捉句子中不同方面的信息,Transformer 引入了多头注意力机制。这个机制允许我们并行地计算多组查询、键和值向量,捕捉不同的关系。

多头注意力机制的步骤

  1. 分组:将查询、键和值向量分成多组,每组称为一个“头”。
  2. 独立计算:每个头独立计算注意力得分,并生成新的表示。
  3. 拼接与变换:将所有头的结果拼接起来,并通过一个线性变换生成最终的输出。

例子

假设我们有两个头:

  • 第一头可能主要关注“我”和“喜欢”的关系。
  • 第二头可能主要关注“吃”和“苹果”的关系。通过这种方式,多头注意力机制可以更全面地理解句子中的不同关系。

第四阶段:残差连接和层归一化

残差连接(Residual Connection)

残差连接是一种技术,它通过在网络层之间添加直接的跳跃连接,帮助缓解深度神经网络中的梯度消失问题。

原理

在每一层的输出中,我们会添加上这一层的输入。这可以用公式表示为:

其中,Layer(𝑥) 表示这一层的计算结果,𝑥 是输入。

优点

  • 缓解梯度消失问题:残差连接允许梯度直接通过跳跃连接传播,从而保持梯度不至于消失。
  • 更快的训练速度:残差连接使得网络更容易训练,减少了训练时间。

示例

假设我们有一个句子“我喜欢吃苹果”,经过一层自注意力机制处理后,我们会将这一层的输出与原始输入相加,生成新的表示。这使得信息更好地在网络中传播。

层归一化(Layer Normalization)

层归一化是一种技术,它通过对每一层的输出进行归一化处理,帮助加速训练和提高模型稳定性。

原理

层归一化会对每一层的输出进行归一化处理,使得输出的均值为 0,方差为 1。这可以用公式表示为:

优点

  • 提高训练速度:层归一化使得网络层的输出更为稳定,加快了训练速度。
  • 提高模型稳定性:通过归一化处理,减少了网络层之间的数值波动,提高了模型的稳定性。

示例

在每一层的输出经过残差连接后,我们会对结果进行层归一化处理,使得输出更加稳定。例如,在句子“我喜欢吃苹果”中,每一层的输出经过层归一化处理后,可以更好地进行下一层的计算。

抱个拳,送个礼

点击 ↑ 领取

防失联,进免费知识星球,直达算法金 AI 实验室

https://t.zsxq.com/ckSu3

免费知识星球,欢迎加入交流

第五阶段:实际应用与高级优化

自注意力机制的实现

基本实现步骤

  1. 输入处理:将输入文本转换为向量表示,可以使用词嵌入(word embedding)技术。
  2. 计算查询、键和值:根据输入向量,计算每个单词的查询、键和值向量。
  3. 计算注意力得分:使用查询和键向量计算注意力得分,并通过 softmax 转换成概率。
  4. 加权求和:根据注意力得分,对值向量进行加权求和,生成新的表示。
  5. 多头注意力机制:并行计算多组查询、键和值向量,并将结果拼接起来。
  6. 残差连接和层归一化:在每一层的输出后,添加残差连接并进行层归一化处理。

代码示例

以下是一个简化的自注意力机制的实现示例:

import torch
import torch.nn.functional as Fclass SelfAttention(torch.nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert self.head_dim * heads == embed_size, "Embedding size needs to be divisible by heads"self.values = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = torch.nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)out = self.fc_out(out)return out

优化技巧

使用预训练模型

在实际应用中,可以使用预训练的 Transformer 模型,如 BERT、GPT 等,这些模型已经在大规模数据上进行过训练,能够大幅提升性能。

微调(Fine-tuning)

在特定任务上对预训练模型进行微调,即在预训练模型的基础上,使用少量的任务特定数据进行训练,以适应具体的应用场景。

正则化技术

为了防止模型过拟合,可以使用正则化技术,如 Dropout、权重衰减等。

实际应用案例

自然语言处理

自注意力机制广泛应用于自然语言处理任务,如机器翻译、文本生成、情感分析等。例如,Google 的翻译系统使用 Transformer 模型进行高效的翻译。

图像处理

自注意力机制也被应用于图像处理任务,如图像分类、目标检测等。Vision Transformer(ViT)是将 Transformer 应用于图像处理的成功案例。

[ 抱个拳,总个结 ]

在第五阶段中,我们探讨了自注意力机制在实际应用中的实现步骤,提供了代码示例,并介绍了一些高级优化技巧和实际应用案例。通过这些内容,大侠可以一窥 Transformer 的核心 - 自注意力机制的实际应用和优化方法。

至此,五个阶段的学习已经完成,希望这能帮助你全面理解自注意力机制,并在实际项目中成功应用。

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38698.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推送本地代码库到gitee

方式一: 1、在gitee创建代码库 2、下拉到本地 git clone https:xxxx 3、将要上传的代码复制进去 4、git add . 5、git commit -m 6、git push -u origin master 成功 方式二: 1、在gitee创建代码库 2、将要上传的代码库执行 git init 3、gi…

无线物联网练习题

文章目录 选择填空简答大题 选择 不属于物联网感知技术的是(A) A:ZigBee B:红外传感器 C:FRID D:传感器 ZigBee是一种无线通信技术,虽然它常用于物联网中作为设备之间的通信手段,但它本身并不是一种感知技术 关于物联网于与互联网的区别的描述&#xff…

【机器学习】基于Transformer的迁移学习:理论与实践

引言 在机器学习领域,迁移学习已成为提升模型训练效率和性能的重要策略,特别是在标注数据稀缺的场景下。Transformer模型自2017年由Google提出以来,在自然语言处理(NLP)领域取得了突破性进展,并逐渐扩展到…

map和set的底层实现

前言 map和set的底层都是由红黑树构成&#xff0c;但是map是kv模型&#xff0c;set是k模型。如何用一颗子树来同时封装map和set&#xff0c;还有怎么实现map/set的迭代器是这节重点 map和set的模板参数 struct MapKeyOfT{const K& operator()(const pair<K, V>&am…

XF 533-2012 挡烟垂壁

挡烟垂壁是指用不燃材料制成&#xff0c;垂直安装在建筑顶棚、横梁或吊顶下&#xff0c;能在火灾时形成一定的蓄烟空间的挡烟分隔设施。 XF 533-2012 挡烟垂壁测试项目 测试要求 测试标准 外观 XF 533 材料 XF 533 尺寸与极限偏差 XF 533 漏烟量 XF 533 耐高温性能 …

Zuul介绍

Zuul 是 Netflix 开源的一个云平台网络层代理&#xff0c;它主要用于路由、负载均衡、中间件通信和动态路由。Zuul 本质上是一个基于 JVM 的网关&#xff0c;它提供了以下功能&#xff1a; 1.路由&#xff1a;Zuul 允许客户端和服务器之间的所有入站和出站请求通过一个中心化的…

gbase8s数据库中根据系统表查看锁的现状和锁资源的监控(包括了两个onstat -g的关键命令和锁的查看演示)

1. 锁资源信息的查找和监控 1.1. 系统表中关于锁的信息 1.1.1. 当前正在占用锁资源和等待锁资源信息的系统表syslocks和测试 > select * from sysmaster:syslocks; dbsname test --数据库名称 tabname test --锁发生的表名称 rowidlk 6918 --发生锁的行号 keynum …

小红书怎么保存无水印图?

使用小红书APP长按保存的图片代有水印&#xff0c;很多人想知道保存小红书无水印图片的方法。本文教你如何保存到无水印的小红书图片&#xff0c;但是请注意不要侵犯作者图片的版权。 小红书怎么保存无水印图&#xff1f; 1、手机上打开小红书APP&#xff1b; 2、打开后&#…

昇思25天学习打卡营第13天|BERT

一、简介&#xff1a; BERT全称是来自变换器的双向编码器表征量&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;&#xff0c;它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自…

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…

Quartz表达式:定时任务调度的高级配置与应用

Quartz表达式&#xff1a;定时任务调度的高级配置与应用 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 1. Quartz表达式概述 Quartz是一个强大的开源作业调…

卡尔曼滤波公式推导笔记

视频见B站上DR_CAN的卡尔曼滤波器 【卡尔曼滤波器】3_卡尔曼增益超详细数学推导 &#xff5e;全网最完整_哔哩哔哩_bilibili

动手学深度学习5.6 GPU-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记&#xff0c;以及对课后练习的一些思考&#xff0c;自留回顾&#xff0c;也供同学之人交流参考。 本节课程地址&#xff1a;17 使用和购买 GPU【动手学深度学习v2】_哔哩哔哩_bilibili 本节教材地址&#xff1a;5.6. GPU —…

数据库定义语言(DDL)

数据库定义语言&#xff08;DDL&#xff09; 一、数据库操作 1、 查询所有的数据库 SHOW DATABASES;效果截图&#xff1a; 2、使用指定的数据库 use 2403 2403javaee;效果截图&#xff1a; 3、创建数据库 CREATE DATABASE 2404javaee;效果截图&#xff1a; 4、删除数据…

玩转springboot之springboot热部署

springboot热部署 热部署是在服务器运行时重新部署项目&#xff0c;直接加载整个应用&#xff0c;会释放内存&#xff0c;不过比较耗时 配置tomcat实现热部署 有三种方式 方式一 把项目web文件放在webapps目录下 方式二 在tomcat\conf\server.xml中的<host>标签内添加<…

面向阿克曼移动机器人(自行车模型)的LQR(最优二次型调节器)路径跟踪方法

线性二次调节器&#xff08;Linear Quadratic Regulator&#xff0c;LQR&#xff09;是针对线性系统的最优控制方法。LQR 方法标准的求解体系是在考虑到损耗尽可能小的情况下, 以尽量小的代价平衡其他状态分量。一般情况下&#xff0c;线性系统在LQR 控制方法中用状态空间方程描…

opencv c++ python获取摄像头默认分辨率及设置缩放倍数

c代码 #include <opencv2/opencv.hpp> #include <iostream>int main() {// 创建一个VideoCapture对象cv::VideoCapture cap(0); // 参数0表示打开默认摄像头// 检查摄像头是否成功打开if (!cap.isOpened()) {std::cerr << "Error: Could not open came…

Android super.img结构及解包和重新组包

Android super.img结构及解包和重新组包 从Android10版本开始&#xff0c;Android系统使用动态分区&#xff0c;system、vendor、 odm等都包含在super.img里面&#xff0c;编译后的最终镜像不再有这些单独的 image&#xff0c;取而代之的是一个总的 super.img. 1. 基础知识 …

【Unity】RPG2D龙城纷争(七)关卡编辑器之剧情编辑

更新日期:2024年7月1日。 项目源码:第五章发布(正式开始游戏逻辑的章节) 索引 简介一、剧情编辑1.对话数据集2.对话触发方式3.选择对话角色4.设置对话到关卡5.通关条件简介 严格来说,剧情编辑不在关卡编辑器界面中完成,只不过它仍然属于关卡编辑的范畴。 在我们的设想中…

鸿蒙:页面动画-属性动画、显示动画

1.属性动画是通过设置组件的animation属性来给组件添加动画&#xff0c;当组件的width、height、backgroundColor、scale等属性变更时可以实现过渡渐变效果。 2.显示动画是通过全局animateTo函数来修改组件的属性&#xff0c;实现属性变化时的渐变过渡效果。 核心属性