算法金 | Transformer,一个神奇的算法模型!!


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

抱个拳,送个礼

在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。

今个儿我们将通过五个阶段,逐步深入讲解自注意力机制,帮助大侠一窥其原理和应用,成功实现变身(装 X )

第一阶段:自注意力机制基础

在处理语言和文字时,我们经常需要理解一个句子中的单词是如何相互关联的。例如,在句子“猫追着老鼠跑”中,我们需要知道“猫”是追的主体,“老鼠”是被追的对象。传统的方法在理解这些关系时有一些困难,特别是当句子变得很长时。自注意力机制是一种新的方法,可以更好地理解句子中单词之间的关系,无论句子有多长。

自注意力机制的核心思想是:每个单词都能“注意到”句子中的其他单词,并根据这些单词来调整自己。这有点像我们在读一篇文章时,会注意到一些关键的词句来帮助我们理解文章的整体意思。

第二阶段:自注意力机制的工作原理

在自注意力机制中,每个单词会看向句子中的其他单词,并计算一个注意力得分。这些得分表示每个单词对其他单词的关注程度。这个过程可以理解为每个单词都在问自己:“我应该关注哪些单词?”

计算注意力得分

以句子“我喜欢吃苹果”为例:

  • “我”计算它对“喜欢”、“吃”和“苹果”的注意力得分。
  • 每个单词的得分会被转换成一个概率,表示它在句子中有多重要。

注意力得分会被一种叫做 softmax 的方法转换成概率。这种方法确保所有的得分加起来等于 1,这样我们就可以知道每个单词的重要性。例如:

  • “我”可能对“喜欢”的关注度是 0.4,对“吃”的关注度是 0.3,对“苹果”的关注度是 0.3。
  • 这些得分表示“我”最关注的是“喜欢”,其次是“吃”和“苹果”。

生成新表示

每个单词会根据这些概率得分,重新组合句子中的信息,生成新的表示。这就像我们在阅读一篇文章时,会根据每句话的重要性来总结文章的核心内容。

防失联,进免费知识星球,直达算法金 AI 实验室 https://t.zsxq.com/ckSu3

更多内容,见免费知识星球

第三阶段:查询、键和值

在自注意力机制中,每个单词都被表示为三个向量:查询(Query)、键(Key)和值(Value)。这些向量帮助我们计算注意力得分,并生成新的单词表示。

查询(Query)

查询向量表示我们希望了解的单词。每个单词都有一个查询向量,用于计算它与其他单词的关系。

键(Key)

键向量表示句子中每个单词的特征。查询向量会与键向量进行对比,计算出注意力得分。

值(Value)

值向量表示句子中每个单词的具体内容。注意力得分会作用于值向量,以生成新的单词表示。

示例

以句子“我喜欢吃苹果”为例:

  • “我”的查询向量会与“喜欢”、“吃”和“苹果”的键向量进行对比,计算出它们的注意力得分。
  • 这些得分会用于加权“喜欢”、“吃”和“苹果”的值向量,生成“我”的新表示。

多头注意力机制

为了更好地捕捉句子中不同方面的信息,Transformer 引入了多头注意力机制。这个机制允许我们并行地计算多组查询、键和值向量,捕捉不同的关系。

多头注意力机制的步骤

  1. 分组:将查询、键和值向量分成多组,每组称为一个“头”。
  2. 独立计算:每个头独立计算注意力得分,并生成新的表示。
  3. 拼接与变换:将所有头的结果拼接起来,并通过一个线性变换生成最终的输出。

例子

假设我们有两个头:

  • 第一头可能主要关注“我”和“喜欢”的关系。
  • 第二头可能主要关注“吃”和“苹果”的关系。通过这种方式,多头注意力机制可以更全面地理解句子中的不同关系。

第四阶段:残差连接和层归一化

残差连接(Residual Connection)

残差连接是一种技术,它通过在网络层之间添加直接的跳跃连接,帮助缓解深度神经网络中的梯度消失问题。

原理

在每一层的输出中,我们会添加上这一层的输入。这可以用公式表示为:

其中,Layer(𝑥) 表示这一层的计算结果,𝑥 是输入。

优点

  • 缓解梯度消失问题:残差连接允许梯度直接通过跳跃连接传播,从而保持梯度不至于消失。
  • 更快的训练速度:残差连接使得网络更容易训练,减少了训练时间。

示例

假设我们有一个句子“我喜欢吃苹果”,经过一层自注意力机制处理后,我们会将这一层的输出与原始输入相加,生成新的表示。这使得信息更好地在网络中传播。

层归一化(Layer Normalization)

层归一化是一种技术,它通过对每一层的输出进行归一化处理,帮助加速训练和提高模型稳定性。

原理

层归一化会对每一层的输出进行归一化处理,使得输出的均值为 0,方差为 1。这可以用公式表示为:

优点

  • 提高训练速度:层归一化使得网络层的输出更为稳定,加快了训练速度。
  • 提高模型稳定性:通过归一化处理,减少了网络层之间的数值波动,提高了模型的稳定性。

示例

在每一层的输出经过残差连接后,我们会对结果进行层归一化处理,使得输出更加稳定。例如,在句子“我喜欢吃苹果”中,每一层的输出经过层归一化处理后,可以更好地进行下一层的计算。

抱个拳,送个礼

点击 ↑ 领取

防失联,进免费知识星球,直达算法金 AI 实验室

https://t.zsxq.com/ckSu3

免费知识星球,欢迎加入交流

第五阶段:实际应用与高级优化

自注意力机制的实现

基本实现步骤

  1. 输入处理:将输入文本转换为向量表示,可以使用词嵌入(word embedding)技术。
  2. 计算查询、键和值:根据输入向量,计算每个单词的查询、键和值向量。
  3. 计算注意力得分:使用查询和键向量计算注意力得分,并通过 softmax 转换成概率。
  4. 加权求和:根据注意力得分,对值向量进行加权求和,生成新的表示。
  5. 多头注意力机制:并行计算多组查询、键和值向量,并将结果拼接起来。
  6. 残差连接和层归一化:在每一层的输出后,添加残差连接并进行层归一化处理。

代码示例

以下是一个简化的自注意力机制的实现示例:

import torch
import torch.nn.functional as Fclass SelfAttention(torch.nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert self.head_dim * heads == embed_size, "Embedding size needs to be divisible by heads"self.values = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = torch.nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = torch.nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, query, mask):N = query.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]values = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = query.reshape(N, query_len, self.heads, self.head_dim)energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)out = self.fc_out(out)return out

优化技巧

使用预训练模型

在实际应用中,可以使用预训练的 Transformer 模型,如 BERT、GPT 等,这些模型已经在大规模数据上进行过训练,能够大幅提升性能。

微调(Fine-tuning)

在特定任务上对预训练模型进行微调,即在预训练模型的基础上,使用少量的任务特定数据进行训练,以适应具体的应用场景。

正则化技术

为了防止模型过拟合,可以使用正则化技术,如 Dropout、权重衰减等。

实际应用案例

自然语言处理

自注意力机制广泛应用于自然语言处理任务,如机器翻译、文本生成、情感分析等。例如,Google 的翻译系统使用 Transformer 模型进行高效的翻译。

图像处理

自注意力机制也被应用于图像处理任务,如图像分类、目标检测等。Vision Transformer(ViT)是将 Transformer 应用于图像处理的成功案例。

[ 抱个拳,总个结 ]

在第五阶段中,我们探讨了自注意力机制在实际应用中的实现步骤,提供了代码示例,并介绍了一些高级优化技巧和实际应用案例。通过这些内容,大侠可以一窥 Transformer 的核心 - 自注意力机制的实际应用和优化方法。

至此,五个阶段的学习已经完成,希望这能帮助你全面理解自注意力机制,并在实际项目中成功应用。

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38698.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无线物联网练习题

文章目录 选择填空简答大题 选择 不属于物联网感知技术的是(A) A:ZigBee B:红外传感器 C:FRID D:传感器 ZigBee是一种无线通信技术,虽然它常用于物联网中作为设备之间的通信手段,但它本身并不是一种感知技术 关于物联网于与互联网的区别的描述&#xff…

【机器学习】基于Transformer的迁移学习:理论与实践

引言 在机器学习领域,迁移学习已成为提升模型训练效率和性能的重要策略,特别是在标注数据稀缺的场景下。Transformer模型自2017年由Google提出以来,在自然语言处理(NLP)领域取得了突破性进展,并逐渐扩展到…

Zuul介绍

Zuul 是 Netflix 开源的一个云平台网络层代理,它主要用于路由、负载均衡、中间件通信和动态路由。Zuul 本质上是一个基于 JVM 的网关,它提供了以下功能: 1.路由:Zuul 允许客户端和服务器之间的所有入站和出站请求通过一个中心化的…

小红书怎么保存无水印图?

使用小红书APP长按保存的图片代有水印,很多人想知道保存小红书无水印图片的方法。本文教你如何保存到无水印的小红书图片,但是请注意不要侵犯作者图片的版权。 小红书怎么保存无水印图? 1、手机上打开小红书APP; 2、打开后&#…

昇思25天学习打卡营第13天|BERT

一、简介: BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自…

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富,主要分为以下几种类型,每种类型都有其特定的用途和特性。 一、整型数值 1.定义:整数类型用于表示整数值,如1、-5、100等。 2.特点: Python 3中的…

卡尔曼滤波公式推导笔记

视频见B站上DR_CAN的卡尔曼滤波器 【卡尔曼滤波器】3_卡尔曼增益超详细数学推导 ~全网最完整_哔哩哔哩_bilibili

动手学深度学习5.6 GPU-笔记练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。 本节课程地址:17 使用和购买 GPU【动手学深度学习v2】_哔哩哔哩_bilibili 本节教材地址:5.6. GPU —…

数据库定义语言(DDL)

数据库定义语言(DDL) 一、数据库操作 1、 查询所有的数据库 SHOW DATABASES;效果截图: 2、使用指定的数据库 use 2403 2403javaee;效果截图: 3、创建数据库 CREATE DATABASE 2404javaee;效果截图: 4、删除数据…

面向阿克曼移动机器人(自行车模型)的LQR(最优二次型调节器)路径跟踪方法

线性二次调节器(Linear Quadratic Regulator,LQR)是针对线性系统的最优控制方法。LQR 方法标准的求解体系是在考虑到损耗尽可能小的情况下, 以尽量小的代价平衡其他状态分量。一般情况下,线性系统在LQR 控制方法中用状态空间方程描…

Android super.img结构及解包和重新组包

Android super.img结构及解包和重新组包 从Android10版本开始,Android系统使用动态分区,system、vendor、 odm等都包含在super.img里面,编译后的最终镜像不再有这些单独的 image,取而代之的是一个总的 super.img. 1. 基础知识 …

鸿蒙:页面动画-属性动画、显示动画

1.属性动画是通过设置组件的animation属性来给组件添加动画,当组件的width、height、backgroundColor、scale等属性变更时可以实现过渡渐变效果。 2.显示动画是通过全局animateTo函数来修改组件的属性,实现属性变化时的渐变过渡效果。 核心属性

【你也能从零基础学会网站开发】关系型数据库中的表(Table)设计结构以及核心组成部分

🚀 个人主页 极客小俊 ✍🏻 作者简介:程序猿、设计师、技术分享 🐋 希望大家多多支持, 我们一起学习和进步! 🏅 欢迎评论 ❤️点赞💬评论 📂收藏 📂加关注 关系型数据库中…

【Git 学习笔记】Ch1.1 Git 简介 + Ch1.2 Git 对象

还是绪个言吧 今天整理 GitHub 仓库,无意间翻到了几年前自学 Git 的笔记。要论知识的稳定性,Git 应该能挤进前三——只要仓库还在,理论上当时的所有开发细节都可以追溯出来。正好过段时间会用到 Git,现在整理出来就当温故知新了。…

DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

深圳先进研究院&上海ai lab&港中文https://github.com/XPixelGroup/DiffBIRhttps://arxiv.org/pdf/2308.15070 问题引入 使用一个统一的框架来处理image restoration任务,包含图片超分BSR,图片去噪BID和人脸restoration BFR,分为两…

【从零开始学架构 架构基础】五 架构设计的复杂度来源:低成本、安全、规模

架构设计的复杂度来源其实就是架构设计要解决的问题,主要有如下几个:高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键,就是新旧技术之间不是完全的替代关系,有交叉,有各自的特点,所以才需要具体…

微信AI机器人智能助手:利用大模型定制训练知识库

随着人工智能技术的迅速发展,AI已经渗透到了我们生活得方方面面。AI文本撰写、AI绘画、AI生成视频、AI换脸等各类应用层出不穷。作为领先的创新人工智能和元宇宙厂商,道可云凭借自身在人工智能、元宇宙、虚拟数字人等领域的技术积累,将AI技术…

跨越界限,巴比达带你访问远程桌面【内网穿透技术分享】

在远程工作的时代,远程桌面访问成为了许多职场人士的日常。Windows系统默认的远程桌面服务监听在3389端口,但对于内网环境下的机器来说,直接从外部访问这个端口常常面临重重阻碍。不过,有了巴比达内网穿透,这一切都将不…

141个图表,完美展示数据分类别关系!

本文介绍使用Python工具seaborn详细实现分类关系图表,包含8类图141个代码模版。 分类关系图表用于展示数字变量和一个或多个分类变量之间的关系,可以进一步分为:箱形图(box plot)、增强箱形图(enhanced bo…

STM32第十四课:低功耗模式和RTC实时时钟

文章目录 需求一、低功耗模式1.睡眠模式2.停止模式3.待机模式 二、RTC实现实时时钟1.寄存器配置流程2.标准库开发3.主函数调用 三、需求实现代码 需求 1.实现睡眠模式、停止模式和待机模式。 2.实现RTC实时时间显示。 一、低功耗模式 电源对电子设备的重要性不言而喻&#xff…