题目链接
E - Random Swaps of Balls (atcoder.jp)
Statements
Problem Statement
There are N − 1 N - 1 N−1 white balls and one black ball. These N N N balls are arranged in a row, with the black ball initially at the leftmost position.
Takahashi will perform the following operation exactly K K K times.
- Choose an integer uniformly at random between 1 1 1 and N N N, inclusive, twice. Let a a a and b b b the chosen integers. If a ≠ b a \neq b a=b, swap the a a a-th and b b b-th balls from the left.
After K K K operations, let the black ball be at the x x x-th position from the left. Find the expected value of x x x, modulo 998244353 998244353 998244353.
Solution
设 d p i , j dp_{i,j} dpi,j 表示第 i i i 轮黑球位于位置 j j j 的概率
根据期望定义 : r e s = ∑ i = 1 N d p i , j ∗ i res=\sum_{i=1}^N dp_{i,j}*i res=∑i=1Ndpi,j∗i
发现 2 ~ N 其实是没有区别的位置,即 :
d p k , 2 = d p k , 3 = ⋯ = d p k , N dp_{k,2}=dp_{k,3}=\cdots=dp_{k,N} dpk,2=dpk,3=⋯=dpk,N
所以 :
r e s = d p k , 2 ∗ ∑ i = 2 N i + d p k , 1 res=dp_{k,2}*\sum_{i=2}^N i+dp_{k,1} res=dpk,2∗∑i=2Ni+dpk,1
求 d p k , 2 dp_{k,2} dpk,2 可以递推 :
设 λ \lambda λ 为黑球保持不变的概率,多少我忘了
这一轮位于 x =上一轮位于 x * 保持 + 上一轮不位于 * 交换
公式我也懒得写了
Code
#include<bits/stdc++.h>
using namespace std;
#define int long longint const mod = 998244353;int ksm(int a, int k, int p){int res = 1;a %= p;while(k){if(k & 1) res = res * a % p;k >>= 1;a = a * a % p;}return res;
}
int inv(int x){x %= mod;return ksm(x, mod - 2, mod);
}
int n, k;
void solve(){cin >> n >> k;int p = 2LL * inv(n * n) % mod;for(int i = 2; i <= k; i ++){int t1 = 2LL * inv(n * n) % mod;int t2 = ((n * n % mod - 2 * n) % mod + mod) % mod;t2 = t2 * inv(n * n) % mod;p = (t1 + t2 * p % mod) % mod;}int res = 0; int tmp = ((n * (n + 1) % mod * inv(2LL) - 1) % mod + mod) % mod;res = tmp * p % mod; (p = (n * n % mod - 2 * n + 2) % mod + mod) %= mod;p = p * inv(n * n) % mod;for(int i = 2; i <= k; i ++){int t1 = 2LL * inv(n * n) % mod;int t2 = ((n * n % mod - 2 * n) % mod + mod) % mod;t2 = t2 * inv(n * n) % mod;p = (t1 + t2 * p % mod) % mod;} (res += p) %= mod;cout << res << '\n';
}signed main(){ios::sync_with_stdio(false);cin.tie(0), cout.tie(0); solve();return 0;
}