实验2 色彩模式转换

1. 实验目的

①了解常用的色彩模式,理解色彩模式转换原理;
②掌握Photoshop中常用的颜色管理工具和色彩模式转换方法;
③掌握使用Matlab/Python+OpenCV编程实现色彩模式转换的方法。

2. 实验内容

①使用Photoshop中的颜色管理工具,转换色彩模式并查看各通道图像。
②调用Matlab/OpenCV中相关函数,实现RGB、YCbCr、HSV等色彩模式之间的转换;
③使用Matlab/Python,自行编写函数实现任意两个色彩模式之间的转换。

3. 实验过程

3.1 Photoshop颜色管理工具

打开Photoshop,新建空白文件,使用“拾色器”工具,改变前景色和后景色,观察各颜色通道变化规律和变化范围;确定颜色后,使用画笔工具和橡皮擦工具,观察图层变化情况;
① 实验步骤

在这里插入图片描述

②实验结果展示

在这里插入图片描述

3.2 Photoshop实现色彩模式转换

在Photoshop中实现RGB到CMYK,Lab色彩模式的转换,并查看各通道图像。
①实验步骤

在这里插入图片描述
② 实验结果展示
在这里插入图片描述

3.3 使用函数实现色彩模式转换

使用 Matlab/OpenCV中相关函数,实现RGB、YCbCr、HSV等色彩模式之间的转换。具体步骤如下:
⑴将RGB图像分离为R/G/B通道并显示;将R/G/B通道合并为RGB图像。
⑵将RGB图像转换为YCbCr/HSV图像,并分别显示各个通道图像;再将各个通道合并为YCbCr/HSV图像。
⑶将⑵中的YCbCr/HSV图像重新转换为RGB图像。

3.3.1 Matlab实现:

调用Matlab相关函数,实现各色彩模式之间的转换:
① 主要函数及其参数
请填写以下函数对应的参数说明:

rgb2YCbCr(image)rgb2YCbCr(image) 是一个函数,用于将RGB(红绿蓝)图像转换为YCbCr(亮度、蓝色差、红色差)颜色空间
rgb2hsv rgb2hsv 是一个函数,用于将RGB(红绿蓝)图像转换为HSV(色相、饱和度、明度)颜色空间
ycbcr2rgbycbcr2rgb 是一个函数,用于将YCbCr(亮度、蓝色差、红色差)图像转换回RGB(红绿蓝)颜色空间
hsv2rgbhsv2rgb 是一个函数,用于将HSV(色相、饱和度、明度)图像转换为RGB(红绿蓝)颜色空间

② 实验代码展示

%将 RGB 图像分离为 R/G/B 通道并显示,然后将 R/G/B 通道合并为 RGB 图像,可以使用以下函数:% 读取 RGB 图像
rgbImage = imread('lena.png');% 分离 R/G/B 通道
redChannel = rgbImage(:,:,1);
greenChannel = rgbImage(:,:,2);
blueChannel = rgbImage(:,:,3);% 显示 R/G/B 通道图像
figure;
subplot(2,2,1);
imshow(rgbImage);
title('Original RGB Image');
subplot(2,2,2);
imshow(redChannel);
title('Red Channel');
subplot(2,2,3);
imshow(greenChannel);
title('Green Channel');
subplot(2,2,4);
imshow(blueChannel);
title('Blue Channel');% 合并 R/G/B 通道为 RGB 图像
mergedImage = cat(3, redChannel, greenChannel, blueChannel);
figure;
imshow(mergedImage);
title('Merged RGB Image');%将 RGB 图像转换为 YCbCr/HSV 图像,并分别显示各个通道图像,然后将各个通道合并为 YCbCr/HSV 图像,可以使用以下函数:% RGB 转 YCbCr 图像
ycbcrImage = rgb2ycbcr(rgbImage);% 分离 Y/Cb/Cr 通道
yChannel = ycbcrImage(:,:,1);
cbChannel = ycbcrImage(:,:,2);
crChannel = ycbcrImage(:,:,3);% 显示 Y/Cb/Cr 通道图像
figure;
subplot(2,2,1);
imshow(rgbImage);
title('Original RGB Image');
subplot(2,2,2);
imshow(yChannel);
title('Y Channel');
subplot(2,2,3);
imshow(cbChannel);
title('Cb Channel');
subplot(2,2,4);
imshow(crChannel);
title('Cr Channel');% 合并 Y/Cb/Cr 通道为 YCbCr 图像
mergedYCbCrImage = cat(3, yChannel, cbChannel, crChannel);
figure;
imshow(mergedYCbCrImage);
title('Merged YCbCr Image');% RGB 转 HSV 图像
hsvImage = rgb2hsv(rgbImage);% 分离 H/S/V 通道
hChannel = hsvImage(:,:,1);
sChannel = hsvImage(:,:,2);
vChannel = hsvImage(:,:,3);% 显示 H/S/V 通道图像
figure;
subplot(2,2,1);
imshow(rgbImage);
title('Original RGB Image');
subplot(2,2,2);
imshow(hChannel);
title('H Channel');
subplot(2,2,3);
imshow(sChannel);
title('S Channel');
subplot(2,2,4);
imshow(vChannel);
title('V Channel');% 合并 H/S/V 通道为 HSV 图像
mergedHSVImage = cat(3, hChannel, sChannel, vChannel);
figure;
imshow(mergedHSVImage);
title('Merged HSV Image');%将上述步骤中得到的 YCbCr/HSV 图像重新转换为 RGB 图像,可以使用以下函数:% YCbCr 转 RGB 图像
reconstructedRGBImage = ycbcr2rgb(ycbcrImage);
figure;
imshow(reconstructedRGBImage);
title('Reconstructed RGB Image from YCbCr');% HSV 转 RGB 图像
reconstructedRGBImage = hsv2rgb(hsvImage);
figure;
imshow(reconstructedRGBImage);
title('Reconstructed RGB Image from HSV');

②实验结果展示

在这里插入图片描述

3.3.2 Python+OpenCV实现

调用OpenCV中相关函数,实现各色彩模式之间的转换:
① 主要函数及其参数
请填写以下函数对应的参数说明:

cv2.COLOR_BGR2RGBcv2.COLOR_BGR2RGB 是OpenCV库中的一个颜色转换标志,用于将BGR(蓝绿红)颜色空间转换为RGB(红绿蓝)颜色空间
cv2.COLOR_BGR2GRAY cv2.COLOR_BGR2GRAY 是OpenCV库中的一个颜色转换标志,用于将BGR(蓝绿红)图像转换为灰度图像
cv2.COLOR_BGR2HSVcv2.COLOR_BGR2HSV 是OpenCV库中的一个颜色转换标志,用于将BGR(蓝绿红)图像转换为HSV(色相、饱和度、明度)颜色空间

② 实验代码展示

import cv2 as cv
import numpy as np# 读取图像
image = cv.imread('lena.png')# (1) RGB图像通道分离和合并
b, g, r = cv.split(image)  # 分离通道
cv.imshow('Blue Channel', b)
cv.imshow('Green Channel', g)
cv.imshow('Red Channel', r)merged_image = cv.merge([b, g, r])  # 合并通道
cv.imshow('Merged RGB Image', merged_image)
cv.waitKey(0)
cv.destroyAllWindows()# (2) RGB到YCbCr和HSV的转换
ycbcr_image = cv.cvtColor(image, cv.COLOR_BGR2YCrCb)
y, cb, cr = cv.split(ycbcr_image)  # 分离通道
cv.imshow('Y Channel', y)
cv.imshow('Cb Channel', cb)
cv.imshow('Cr Channel', cr)hsv_image = cv.cvtColor(image, cv.COLOR_BGR2HSV)
h, s, v = cv.split(hsv_image)  # 分离通道
cv.imshow('Hue Channel', h)
cv.imshow('Saturation Channel', s)
cv.imshow('Value Channel', v)cv.waitKey(0)
cv.destroyAllWindows()# (3) YCbCr和HSV到RGB的转换
rgb_from_ycbcr = cv.cvtColor(ycbcr_image, cv.COLOR_YCrCb2BGR)
cv.imshow('RGB Image from YCbCr', rgb_from_ycbcr)rgb_from_hsv = cv.cvtColor(hsv_image, cv.COLOR_HSV2BGR)
cv.imshow('RGB Image from HSV', rgb_from_hsv)cv.waitKey(0)
cv.destroyAllWindows()

③实验结果展示
在此仅为部分实验结果

在这里插入图片描述

3.3.3 自行编写代码实现

不调用相关库中的函数,根据色彩模式转换原理,找到各色彩模式对应的转换关系,并自行编写代码实现·RGB、YCbCr、HSV等色彩模式的转换。
①实验代码展示

在这里插入图片描述
② 实验结果展示
效果与上图类似,只需在脚本中调用即可。

4. 实验小结

① 使用调用的Matlab函数,OpenCV函数以及自己编写的函数,进行相同的色彩模式转换。得到的转换结果以及各通道图像是一样的吗?查阅相关资料并分析产生这种结果的原因。
答:算法实现的差异:不同的库或代码实现可能会在算法的具体实现上存在微小的差异。这可能涉及数值计算的舍入误差、通道值的截断或舍入方式等。这些差异可能会导致微小的像素级差异,尤其是在通道值较小的情况下。
数据类型的差异:不同的库或代码实现可能使用不同的数据类型来表示图像和通道值。例如,某些库可能使用整数类型(如uint8)表示通道值,而其他库可能使用浮点类型(如float或double)。这可能会导致数值范围和精度方面的差异。
图像加载和保存的差异:图像加载和保存的过程中可能存在不同的编解码算法或参数设置。这可能导致在图像加载和保存过程中引入一些额外的差异。
② 将10张尺寸为160×60的RGB图像存储在多维数组pic中,多维数组的各个维度分别代表了图像中的哪些信息?在不同的图像处理库中,各个维度所代表的含义一样吗?
答:第一个维度(维度0):表示图像的索引或编号。在这种情况下,它表示第几张图像,范围通常是从0到9。
第二个维度(维度1):表示图像的行索引,即图像的垂直方向。
第三个维度(维度2):表示图像的列索引,即图像的水平方向。
第四个维度(维度3):表示图像的通道索引,通常用于表示图像的不同颜色通道。在RGB图像中,常见的通道顺序是红色(R)、绿色(G)和蓝色(B)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/37706.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dubbo 简单入门

Dubbo 简单入门 Dubbo 是一个高性能的分布式服务框架,旨在解决微服务架构下的 RPC(远程过程调用)问题。其核心原理包括服务注册与发现、通信协议、负载均衡、容错机制等。以下是对这些核心原理的详细讲解: 1. 服务注册与发现 服…

Kafka~消息系列问题解决:消费顺序问题解决、消息丢失问题优化(不能保证100%)

消息消费顺序问题 使用消息队列的过程中经常有业务场景需要严格保证消息的消费顺序,比如我们同时发了 2 个消息,这 2 个消息对应的操作分别对应的数据库操作是: 用户等级升级。根据用户等级下的订单价格 假如这两条消息的消费顺序不一样造…

第0章_项目方案介绍

文章目录 第0章 项目方案介绍0.1 功能介绍0.2 硬件方案0.3 软件方案0.3.1 上位机方案0.3.2 **中控方案**0.3.3 **传感器方案**0.3.4 **技术难点** 第0章 项目方案介绍 0.1 功能介绍 本课程来自一个真实项目:多个气体传感器的管理。由于气体传感器比较昂贵&#xf…

比尔盖茨:Agent将是AI最大的赛道

Agent不仅将改变人们与计算机的互动方式,还将颠覆软件行业,引发自从我们从键入命令到点击图标以来计算机领域的最大革命。 保罗艾伦和我一起创立微软的至今,我对软件的热爱至今依然不减。 然而,尽管在过去的几十年中软件已经取得…

Vue.js 和 Node.js 全栈项目的运行与部署指南

Vue.js 和 Node.js 全栈项目的运行与部署指南 前言具体运行方式导入数据库初始化安装配置nodejs启动server后端启动client前端确保前后端正确连接 前言 本博客用来介绍一下一个包含前端和后端代码的全栈项目MoreMall,前端部分使用了 Vue.js,后端部分使用…

多阶段分层构建容器化Spring Boot应用程序

上一节中,容器化spring boot应用程序-CSDN博客我们介绍了基于简单的Dockerfile对spring boot进行容器化的过程,本讲将介绍如何基于Dockerfile进行多阶段的分层构建过程,希望对大家有所帮助。 Spring Boot从版本2.3.0开始支持分层构建容器化的…

Mysql中varchar类型数字排序不对踩坑记录

场景 在进行表设计时将版本号字段设计了为varchar类型,尽量从表设计阶段将数字类型列设计为int型。 再进行排序时如果版本号累计到了10及以上,那么再进行排序时则会出现问题。 比如下面执行排序时发现10被排在了第一位。 这是因为 varchar类型对数字…

51单片机第8步_absacc.h库函数

本章重点学习库函数absacc.h的使用,介绍绝对宏和绝对地址的用法。故事有点老掉牙&#xff0c;但学校的教授们还在继续。 #include <REG52.h> //包含头文件REG52.h,使能51内部寄存器; #include <absacc.h> #include <stdio.h> //包含头文件stdio.h //_get…

已备案网站变更并且不影响现有业务的方案

已备案网站变更并且不影响现有业务的方案 近日有个工作上的需求&#xff0c;已备案网站变更并且不影响现有业务&#xff0c;记录一下。 需求 域名&#xff1a;XXXXXX.com备案变更前主体&#xff1a; 海南XXXXXX科技有限公司 备案变更后主体&#xff1a; 深圳XXXXXX科技有限…

【05】从0到1构建AI生成思维导图应用 -- 前端交互实现

【05】从0到1构建AI生成思维导图应用 – 前端交互实现 大家好&#xff01;最近自己做了一个完全免费的AI生成思维导图的网站&#xff0c;支持下载&#xff0c;编辑和对接微信公众号&#xff0c;可以在这里体验&#xff1a;https://lt2mind.zeabur.app/ 上一章&#xff1a;http…

【图解大数据技术】Hive、HBase

【图解大数据技术】Hive、HBase Hive数据仓库Hive的执行流程Hive架构数据导入Hive HBaseHBase简介HBase架构HBase的列式存储HBase建表流程HBase数据写入流程HBase数据读取流程 Hive Hive是基于Hadoop的一个数据仓库工具&#xff0c;Hive的数据存储在HDFS上&#xff0c;底层基于…

Linux 常用命令 - dd 【复制及转换文件内容】

简介 dd 命令源自于磁盘复制&#xff08;disk dump&#xff09;的缩写&#xff0c;是 Linux 和 Unix 系统中用于转换和复制文件的一个强大工具。它可以在复制过程中进行格式转换&#xff0c;支持不同的块大小&#xff0c;能够直接对硬盘设备进行操作&#xff0c;非常适合进行备…

android里面json操作

1.读取assets下面xzhd/aikit/pck.json String json = null; try { InputStream is = activity.getAssets().open(aikitPathInData+"xzhd/aikit/pck.json"); int size = is.available(); byte[] buffer = new byte…

容器进程

一、容器进程和宿主机进程的关系 容器在进程空间上和宿主机是隔离的&#xff0c;每创建一个容器&#xff0c;该容器都有一个独属的进程空间简称PID NameSpace。但是容器本质也是一个进程&#xff0c;自然是由其父进程创建的&#xff0c;这个可以使用ps aux命令验证。 | 容器视…

Windows 下写C++代码的必备

在 Windows 下写代码&#xff0c;还需要用到 Windows.h 头文件的话&#xff0c;需要记住以下两点&#xff1a; 一定要 predefine 一个宏&#xff0c;NOMINMAX&#xff0c;禁用掉 windows 定义的 min 和 max 宏 #include <winsock.h> #define WIN32_LEAN_AND_MEAN #defin…

【高考志愿】材料科学与工程

目录 一、专业概述 二、就业前景与方向 三、院校选择和报考建议 3.1 院校选择 3.2 报考建议 四、材料科学与工程专业排名 高考志愿选择材料科学与工程专业时&#xff0c;确实是一个需要深思熟虑的决策过程。以下是更详细和扩展的考虑因素&#xff1a; 一、专业概述 学习…

Tesseract Python 图片文字识别入门

1、安装tesseract Index of /tesseract https://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-w64-setup-v5.3.0.20221214.exe 2、安装中文语言包 https://digi.bib.uni-mannheim.de/tesseract/tessdata_fast/ 拷贝到C:\Program Files\Tesseract-OCR\tessdata 3、注…

Java面试题:描述你如何向非技术人员解释技术概念

向非技术人员解释技术概念时&#xff0c;需要使用简单明了的语言&#xff0c;并结合类比和实际例子&#xff0c;使复杂的技术内容变得易于理解。以下是一些具体的策略&#xff1a; 使用类比&#xff1a; 熟悉的场景类比&#xff1a;将技术概念与日常生活中的熟悉事物进行类比。…

每天写java到期末考试--实验四---接口与抽象类--6.29

第一部分&#xff1a;接口与类的实现 Shape接口 java复制代码public interface Shape { double getArea(); double getPerimeter(); } Circle类 public class Circle implements Shape { private double r; public Circle(double r) { this.r r; } Override publ…

ISO26262标准

什么是ISO26262&#xff1f; ISO 26262(国际功能安全标准)是一个涵盖整个汽车产品开发过程的汽车功能安全标准。ISO 26262继承或改编自工业自动化行业的安全要求标准IEC61508&#xff0c;但专门为汽车行业量身定制。最新版本是ISO26262-1:2018。 它包括诸如需求分析、安全分析…