【Python数据分析与可视化】:使用【Matplotlib】实现销售数据的全面分析 ——【Matplotlib】数模学习

目录

安装Matplotlib

1.打开PyCharm:

2.打开终端:

3.安装Matplotlib:

4.确认安装:

导入Matplotlib

创建简单的折线图

代码解析:

创建子图

代码解析:

创建柱状图

代码解析:

创建散点图

代码解析:

创建直方图

代码解析:

多图形组合

代码解析:

保存图形

代码解析:

结论

实战案例:数据分析与可视化

数据集说明

1. 导入库和数据准备

2. 折线图:展示销售趋势

代码解析:

3. 柱状图:展示销售和费用比较

代码解析:

4. 散点图:展示客户数量与销售额关系

代码解析:

5. 直方图:展示销售额分布

代码解析:

6. 组合图:展示多种数据

代码解析:


 

专栏:数学建模学习笔记

pycharm专业版免费激活教程见资源

python相关库的安装:pandas,numpy,matplotlib,statsmodels

总篇:【数学建模】—【新手小白到国奖选手】—【学习路线】

第一卷:【数学建模】—【Python库】—【Numpy】—【学习】

第二卷:【数学建模】——【python库】——【Pandas学习】

本章属于第三卷Matplotlib的学习

安装Matplotlib

在开始使用Matplotlib之前,必须先在你的Python环境中安装它。PyCharm提供了一种方便的方法来安装第三方库。下面是如何在PyCharm中安装Matplotlib的详细步骤:

1.打开PyCharm

  • 打开PyCharm并创建或打开一个现有的项目。

2.打开终端

  • 点击右下角的Terminal标签以打开终端窗口。

3.安装Matplotlib

在终端中输入以下命令并按Enter键:

pip install matplotlib

4.确认安装

import matplotlib.pyplot as plt

你可以通过再次在终端中运行以下命令来确认安装是否成功:

pip show matplotlib

导入Matplotlib

安装成功后,你需要在你的Python脚本中导入Matplotlib库。通常我们会使用以下导入语句:

  • matplotlib.pyplot 是Matplotlib库中的一个子模块,它提供了类似于MATLAB的绘图接口。
  • plt 是一个常见的缩写,用于简化代码书写。

创建简单的折线图

折线图是一种显示数据变化趋势的基本图表类型。以下是一个创建简单折线图的详细步骤和代码解析:

import matplotlib.pyplot as plt# 数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 创建图形
plt.plot(x, y)# 添加标题和标签
plt.title('Simple Line Plot')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建两个列表xy,分别表示横轴和纵轴的数据点。
  3. 创建图形:使用plt.plot(x, y)方法绘制折线图。plot方法的第一个参数是x轴数据,第二个参数是y轴数据。
  4. 添加标题和标签:使用plt.title方法添加图形的标题,使用plt.xlabelplt.ylabel方法为横轴和纵轴添加标签。
  5. 显示图形:使用plt.show()方法显示图形。

创建子图

子图用于在同一个图形窗口中展示多个图表。以下是一个创建两个子图的详细示例:

import matplotlib.pyplot as plt# 数据
x = [1, 2, 3, 4, 5]
y1 = [2, 3, 5, 7, 11]
y2 = [1, 4, 6, 8, 10]# 创建子图
fig, (ax1, ax2) = plt.subplots(2, 1)# 第一个子图
ax1.plot(x, y1)
ax1.set_title('First Subplot')# 第二个子图
ax2.plot(x, y2)
ax2.set_title('Second Subplot')# 调整布局
plt.tight_layout()# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建三个列表xy1y2,分别表示两个子图的x轴和y轴数据。
  3. 创建子图:使用plt.subplots方法创建一个包含两个子图的图形。plt.subplots(2, 1)表示创建一个两行一列的子图布局,fig是图形对象,ax1ax2是两个子图对象。
  4. 绘制子图:分别使用ax1.plotax2.plot方法绘制两个子图。
  5. 添加标题:分别使用ax1.set_titleax2.set_title方法为两个子图添加标题。
  6. 调整布局:使用plt.tight_layout()方法自动调整子图布局,使其不重叠。
  7. 显示图形:使用plt.show()方法显示图形。

创建柱状图

柱状图用于展示分类数据的分布。以下是一个创建简单柱状图的详细示例:

import matplotlib.pyplot as plt# 数据
categories = ['A', 'B', 'C', 'D', 'E']
values = [5, 7, 3, 8, 6]# 创建柱状图
plt.bar(categories, values)# 添加标题和标签
plt.title('Simple Bar Chart')
plt.xlabel('Categories')
plt.ylabel('Values')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建两个列表categoriesvalues,分别表示分类和对应的值。
  3. 创建柱状图:使用plt.bar(categories, values)方法创建柱状图。第一个参数是分类,第二个参数是对应的值。
  4. 添加标题和标签:使用plt.title方法添加图形的标题,使用plt.xlabelplt.ylabel方法为横轴和纵轴添加标签。
  5. 显示图形:使用plt.show()方法显示图形。

创建散点图

散点图用于显示两个变量之间的关系。以下是一个创建简单散点图的详细示例:

import matplotlib.pyplot as plt# 数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 创建散点图
plt.scatter(x, y)# 添加标题和标签
plt.title('Simple Scatter Plot')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建两个列表xy,分别表示横轴和纵轴的数据点。
  3. 创建散点图:使用plt.scatter(x, y)方法创建散点图。scatter方法的第一个参数是x轴数据,第二个参数是y轴数据。
  4. 添加标题和标签:使用plt.title方法添加图形的标题,使用plt.xlabelplt.ylabel方法为横轴和纵轴添加标签。
  5. 显示图形:使用plt.show()方法显示图形。

创建直方图

直方图用于展示数据的频率分布。以下是一个创建简单直方图的详细示例:

import matplotlib.pyplot as plt# 数据
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]# 创建直方图
plt.hist(data, bins=5, edgecolor='black')# 添加标题和标签
plt.title('Simple Histogram')
plt.xlabel('Value')
plt.ylabel('Frequency')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建一个列表data,表示数据样本。
  3. 创建直方图:使用plt.hist(data, bins=5, edgecolor='black')方法创建直方图。hist方法的第一个参数是数据样本,bins参数表示直方图的柱子数量,edgecolor参数设置柱子的边框颜色。
  4. 添加标题和标签:使用plt.title方法添加图形的标题,使用plt.xlabelplt.ylabel方法为横轴和纵轴添加标签。
  5. 显示图形:使用plt.show()方法显示图形。

多图形组合

在同一个图形中组合多种不同类型的图形可以让你更全面地展示数据。以下是一个组合折线图和散点图的详细示例:

import matplotlib.pyplot as plt# 数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [1, 3, 6, 10, 15]# 创建图形和子图
fig, ax1 = plt.subplots()# 绘制第一个数据集
ax1.plot(x, y1, 'g-')  # 绿色实线
ax1.set_xlabel('X data')
ax1.set_ylabel('Y1 data', color='g')# 创建第二个Y轴
ax2 = ax1.twinx()
ax2.plot(x, y2, 'b--')  # 蓝色虚线
ax2.set_ylabel('Y2 data', color='b')# 添加标题
plt.title('Multiple Data Sets')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建三个列表xy1y2,分别表示两个数据集的x轴和y轴数据。
  3. 创建图形和子图:使用plt.subplots()方法创建图形和子图对象。fig是图形对象,ax1是第一个子图对象。
  4. 绘制第一个数据集:使用ax1.plot(x, y1, 'g-')方法绘制第一个数据集。参数'g-'表示绿色实线。
  5. 设置第一个Y轴标签:使用ax1.set_xlabelax1.set_ylabel方法设置第一个子图的x轴和y轴标签,color参数设置标签颜色。
  6. 创建第二个Y轴:使用ax1.twinx()方法创建第二个Y轴。
  7. 绘制第二个数据集:使用ax2.plot(x, y2, 'b--')方法绘制第二个数据集。参数'b--'表示蓝色虚线。
  8. 设置第二个Y轴标签:使用ax2.set_ylabel方法设置第二个子图的y轴标签,color参数设置标签颜色。
  9. 添加标题:使用plt.title方法为整个图形添加标题。
  10. 显示图形:使用plt.show()方法显示图形。

保存图形

创建图形后,你可能需要将其保存到文件中。Matplotlib允许你将图形保存为多种格式,包括PNG、PDF、SVG等。以下是一个保存图形为PNG文件的详细示例:

import matplotlib.pyplot as plt# 数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]# 创建图形
plt.plot(x, y)# 添加标题和标签
plt.title('Simple Line Plot')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')# 保存图形
plt.savefig('line_plot.png')# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 数据准备:创建两个列表xy,分别表示横轴和纵轴的数据点。
  3. 创建图形:使用plt.plot(x, y)方法绘制折线图。
  4. 添加标题和标签:使用plt.title方法添加图形的标题,使用plt.xlabelplt.ylabel方法为横轴和纵轴添加标签。
  5. 保存图形:使用plt.savefig('line_plot.png')方法将图形保存为PNG文件。你可以根据需要更改文件名和文件格式,例如line_plot.pdfline_plot.svg
  6. 显示图形:使用plt.show()方法显示图形。

结论

Matplotlib是一个功能强大且灵活的Python库,非常适合用于数学建模和数据可视化。通过以上详细的示例和解析,你可以掌握Matplotlib的基本用法,并在实际项目中应用这些技能进行数据分析和展示。随着你对Matplotlib的深入了解,你可以进一步探索更多高级功能,如自定义图形样式、添加图例、调整图形布局等,使你的图形更具专业性和表现力。

实战案例:数据分析与可视化

为了更好地理解和应用Matplotlib,我们将通过一个实际案例来展示如何使用Matplotlib进行数据分析与可视化。我们将分析一个虚构的数据集,该数据集包含某家公司在不同月份的销售数据,并展示如何绘制折线图、柱状图、散点图、直方图和组合图。

数据集说明

我们假设有一个包含以下信息的数据集:

  • month: 月份(1月到12月)
  • sales: 销售额(单位:千元)
  • expenses: 费用(单位:千元)
  • customers: 客户数量

数据如下:

data = {'month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],'sales': [20, 34, 30, 35, 27, 25, 30, 32, 31, 29, 28, 35],'expenses': [12, 17, 18, 23, 22, 19, 20, 21, 19, 20, 18, 22],'customers': [200, 240, 230, 250, 220, 210, 230, 240, 235, 220, 215, 250]
}

1. 导入库和数据准备

首先,导入必要的库并准备数据:

import matplotlib.pyplot as pltdata = {'month': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'],'sales': [20, 34, 30, 35, 27, 25, 30, 32, 31, 29, 28, 35],'expenses': [12, 17, 18, 23, 22, 19, 20, 21, 19, 20, 18, 22],'customers': [200, 240, 230, 250, 220, 210, 230, 240, 235, 220, 215, 250]
}

2. 折线图:展示销售趋势

折线图适合用来展示数据随时间的变化趋势。我们来绘制销售额随月份变化的折线图:

plt.plot(data['month'], data['sales'], marker='o', linestyle='-', color='b')
plt.title('Monthly Sales')
plt.xlabel('Month')
plt.ylabel('Sales (in thousands)')
plt.grid(True)
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 准备数据:使用字典形式准备数据。
  3. 绘制折线图:使用plt.plot方法绘制折线图,marker='o'表示数据点使用圆形标记,linestyle='-'表示实线,color='b'表示蓝色。
  4. 添加标题和标签:使用plt.titleplt.xlabelplt.ylabel方法添加图形标题和轴标签。
  5. 显示网格:使用plt.grid(True)方法显示网格线。
  6. 显示图形:使用plt.show()方法显示图形。

3. 柱状图:展示销售和费用比较

柱状图适合用来比较不同类别的数据。我们来绘制销售额和费用的柱状图:

import numpy as np# 设置柱的宽度和位置
bar_width = 0.35
index = np.arange(len(data['month']))# 创建柱状图
plt.bar(index, data['sales'], bar_width, label='Sales', color='b')
plt.bar(index + bar_width, data['expenses'], bar_width, label='Expenses', color='r')# 添加标题和标签
plt.xlabel('Month')
plt.ylabel('Amount (in thousands)')
plt.title('Sales vs Expenses')
plt.xticks(index + bar_width / 2, data['month'])
plt.legend()# 显示图形
plt.show()

代码解析:

  1. 导入库:除了matplotlib.pyplot,还需要导入numpy来处理数组和索引。
  2. 设置柱的宽度和位置:使用bar_width设置每个柱子的宽度,使用np.arange创建一个数组表示每个柱子的x轴位置。
  3. 创建柱状图:使用plt.bar方法绘制柱状图,第一个参数是x轴位置,第二个参数是数据值,bar_width设置柱子的宽度,label设置图例标签,color设置颜色。
  4. 添加标题和标签:使用plt.xlabelplt.ylabelplt.title方法添加图形标题和轴标签。
  5. 设置x轴刻度:使用plt.xticks方法设置x轴刻度的位置和标签。
  6. 添加图例:使用plt.legend()方法显示图例。
  7. 显示图形:使用plt.show()方法显示图形。

 

 

4. 散点图:展示客户数量与销售额关系

散点图适合用来展示两个变量之间的关系。我们来绘制客户数量与销售额的散点图:

plt.scatter(data['customers'], data['sales'], color='g')
plt.title('Customers vs Sales')
plt.xlabel('Number of Customers')
plt.ylabel('Sales (in thousands)')
plt.grid(True)
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 准备数据:使用字典形式准备数据。
  3. 绘制散点图:使用plt.scatter方法绘制散点图,第一个参数是x轴数据,第二个参数是y轴数据,color参数设置数据点颜色。
  4. 添加标题和标签:使用plt.titleplt.xlabelplt.ylabel方法添加图形标题和轴标签。
  5. 显示网格:使用plt.grid(True)方法显示网格线。
  6. 显示图形:使用plt.show()方法显示图形。

 

 

5. 直方图:展示销售额分布

直方图适合用来展示数据的频率分布。我们来绘制销售额的直方图:

plt.hist(data['sales'], bins=5, edgecolor='black')
plt.title('Sales Distribution')
plt.xlabel('Sales (in thousands)')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 准备数据:使用字典形式准备数据。
  3. 绘制直方图:使用plt.hist方法绘制直方图,第一个参数是数据样本,bins参数设置直方图的柱子数量,edgecolor参数设置柱子的边框颜色。
  4. 添加标题和标签:使用plt.titleplt.xlabelplt.ylabel方法添加图形标题和轴标签。
  5. 显示网格:使用plt.grid(True)方法显示网格线。
  6. 显示图形:使用plt.show()方法显示图形。

6. 组合图:展示多种数据

组合图可以同时展示多种类型的数据。我们来创建一个组合图,包含折线图和柱状图:

fig, ax1 = plt.subplots()# 折线图:销售额
ax1.plot(data['month'], data['sales'], 'b-', marker='o', label='Sales')
ax1.set_xlabel('Month')
ax1.set_ylabel('Sales (in thousands)', color='b')
ax1.tick_params('y', colors='b')# 创建第二个Y轴
ax2 = ax1.twinx()
ax2.bar(data['month'], data['expenses'], alpha=0.6, color='r', label='Expenses')
ax2.set_ylabel('Expenses (in thousands)', color='r')
ax2.tick_params('y', colors='r')# 添加标题
plt.title('Monthly Sales and Expenses')# 添加图例
fig.tight_layout()
fig.legend(loc='upper left', bbox_to_anchor=(0.1,0.9))# 显示图形
plt.show()

代码解析:

  1. 导入库:使用import matplotlib.pyplot as plt导入Matplotlib库。
  2. 准备数据:使用字典形式准备数据。
  3. 创建图形和子图:使用plt.subplots()方法创建图形和子图对象。fig是图形对象,ax1是第一个子图对象。
  4. 绘制折线图:使用ax1.plot方法绘制折线图,设置折线图颜色和标记样式。
  5. 设置第一个Y轴标签:使用ax1.set_xlabelax1.set_ylabel方法设置第一个子图的x轴和y轴标签,color参数设置标签颜色。
  6. 创建第二个Y轴:使用ax1.twinx()方法创建第二个Y轴。
  7. 绘制柱状图:使用ax2.bar方法绘制柱状图,设置柱状图颜色和透明度。
  8. 设置第二个Y轴标签:使用ax2.set_ylabel方法设置第二个子图的y轴标签,color参数设置标签颜色。
  9. 添加标题:使用plt.title方法为整个图形添加标题。
  10. 调整布局和添加图例:使用fig.tight_layout()方法自动调整布局,使用fig.legend方法添加图例,设置图例的位置。
  11. 显示图形:使用plt.show()方法显示图形。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/36904.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vite响应Ajax请求

Vite响应Ajax请求 陈拓 2024/06/20-2024/06/24 1. 概述 http-server、live-server 等常用于本地测试和开发的http服务器不能很好的支持 ES 模块,在测试ES 模块时浏览器控制台经常显示错误: Failed to load module script: Expected a JavaScript modu…

esp8266 GPIO

功能综述 ESP8266 的 16 个通⽤ IO 的管脚位置和名称如下表所示。 管脚功能选择 功能选择寄存器 PERIPHS_IO_MUX_MTDI_U(不同的 GPIO,该寄存器不同) PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U,FUNC_GPIO12);PERIPHS_IO_MUX_为前缀。后面的…

基于SpringBoot+Vue的大药房管理系统(带1w+文档)

基于SpringBootVue的大药房管理系统(带1w文档) 本系统主要包括管理员和用户两个用户角色;主要包括:首页,个人中心,用户管理,保健品分类管理,药品分类管理,药品信息管理,疫情常识管理…

Flink入门实战详解

Flink入门实战 Flink项目构建 1)基于MavenIdea创建项目&#xff1a; 使用maven进行项目构建&#xff0c;如图1所示。 图-34 构建maven项目 输入项目中的maven的坐标和存储坐标&#xff0c;如图2所示。 图2 maven坐标和存储位置 2)Maven依赖&#xff1a; <properties>…

开源API网关-ApacheShenYu首次按照启动遇到的问题

一.背景 公司有API网关产品需求&#xff0c;希望有图形化的后台管理功能。看到了ApacheShenYu&#xff0c;作为Apache的顶级项目&#xff0c;直接认可了。首先&#xff0c;感谢各位大神的付出&#xff0c;初步看这个项目是国内大厂中的大神创立的&#xff0c;在此表示膜拜&…

Zookeeper集群安装部署

简介 ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维护、域名服务、分布式同步、组服务等。 除了为Hadoop和HBase提供…

区块链开发基础知识及应用

区块链开发基础知识及应用 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在本文中&#xff0c;我们将深入探讨区块链技术的基础知识及其在应用开发中的实际应用…

阿里云服务器入门使用教程——购买及操作系统选择并进行远程连接

文章目录 一、首先选择一个你自己要买的云服务器类型二、能选的就一个地域和一个操作系统&#xff0c;其他都是固定的三、创建完实例并使用finalshell连接的效果(要在完成后续步骤后才能连接)四、购买之后进入阿里云控制台&#xff0c;开通资源中心五、然后就可以看到已经帮你创…

耐磨材料元宇宙:探索未来科技的无限可能

随着科技的不断发展&#xff0c;我们正逐渐进入一个全新的时代——元宇宙。在这个虚拟世界中&#xff0c;人们可以自由地创造、探索和交流。而在元宇宙中&#xff0c;耐磨材料作为一种重要的基础资源&#xff0c;将为我们的虚拟世界带来更多的可能性。 一、耐磨材料在元宇宙中…

星戈瑞Sulfo Cy3 NHS Ester的水溶性与生物相容性

在生物医学研究领域&#xff0c;荧光标记技术已经成为一种科研工具。其中&#xff0c;Sulfo Cy3 NHS Ester作为一种荧光染料&#xff0c;因其水溶性和生物相容性而受应用。 Sulfo Cy3 NHS Ester的水溶性 Sulfo Cy3 NHS Ester在水中的溶解性较好&#xff0c;能够快速溶解并形成…

JS面试题5——JS继承有哪些方式

1. ES6 /* 此时的Child上只有name属性&#xff0c;没有age属性 */ <script> // 父 class Parent{constructor(){this.age 18;} } // 子 class Child{constructor(){this.name 张三;} } let o1 new Child(); console.log(o1, o1.name, o1.age); // 打印出&#xff1a;C…

Vue基础了解

目录 1、什么是Vue.js 2、Vue的优点 3、Vue的安装 4、Vue程序 5、Vue指令 代码演示&#xff1a; 6、Vue实例的生命周期 1、什么是Vue.js Vue (读音 /vjuː /&#xff0c;类似于 view) 是一套用于构建用户界面的渐进式框架。Vue 的核心库只关注视图层&#xff0c;不仅易…

Python28 十大机器学习算法之线性回归和逻辑回归

1.三类广义上的机器学习算法 监督学习。工作原理&#xff1a;该算法由一个目标/结果变量&#xff08;或因变量&#xff09;组成&#xff0c;该变量将从一组给定的预测变量&#xff08;自变量&#xff09;进行预测。使用这组变量&#xff0c;我们生成了一个将输入数据映射到所…

常见的工业信号指示灯及按钮开关代表什么?如何辨认?

信号指示灯&#xff0c;是用灯光监视电路和电气设备工作或位置状态的器件。也是自动化设备中最直观&#xff0c;唯一的监视元器件。主要的作用是通常用于反映电路的工作状态&#xff08;有电或无电&#xff09;、电气设备的工作状态&#xff08;运行、停运或试验&#xff09;和…

小程序web-view无法打开该页面的解决方法

问题&#xff1a;开发者工具可以正常打开&#xff0c;正式上线版小程序使用 web-view 组件测试时提示&#xff1a;“无法打开该页面&#xff0c;不支持打开 https://xxxxxx&#xff0c;请在“小程序右上角更多->反馈与投诉”中和开发者反馈。” 解决方法&#xff1a;需要配…

市场拓展招聘:完整指南

扩大招聘业务会给你带来很多挑战&#xff0c;更不用说你已经在处理的问题了。助教专业人士每周花近13个小时为一个角色寻找候选人。此外&#xff0c;客户的需求也在不断变化&#xff0c;招聘机构之间的竞争也在加剧。毫无疑问&#xff0c;对增长有战略的方法会有很大的帮助。一…

大数据面试题之Kafka(4)

目录 Kafka如何保证数据的ExactlyOnce? Kafka消费者怎么保证ExactlyOnce Kafka监控实现? Kafka中的数据能彻底删除吗? Kafka复制机制? Kafka分区多副本机制? Kafka分区分配算法 Kafka蓄水池机制 Kafka如何实现幂等性? Kafka的offset存在哪? Kafka中如何…

jeecg导入excel 含图片(嵌入式,浮动式)

jeecgboot的excel导入 含图片&#xff08;嵌入式&#xff0c;浮动式&#xff09; 一、啰嗦二、准备三、 代码1、代码&#xff08;修改覆写的ExcelImportServer&#xff09;2、代码&#xff08;修改覆写的PoiPublicUtil&#xff09;3、代码&#xff08;新增类SAXParserHandler&a…

【数学建模】——【python库】——【Pandas学习】

专栏&#xff1a;数学建模学习笔记 pycharm专业版免费激活教程见资源&#xff0c;私信我给你发 python相关库的安装&#xff1a;pandas,numpy,matplotlib&#xff0c;statsmodels 总篇&#xff1a;【数学建模】—【新手小白到国奖选手】—【学习路线】 第一卷&#xff1a;【数学…

总结一下Linux、Windows、Ubuntu、Debian、CentOS等到底是啥?及它们的区别是什么

小朋友你总是有很多问好 你是否跟我一样&#xff0c;不是计算机科班出身&#xff0c;很多东西都是拿着在用&#xff0c;并不知道为什么&#xff0c;或者对于它们的概念也是稀里糊涂的&#xff0c;比如今天说的这个。先简单描述下&#xff0c;我先前的疑问&#xff1a; Linux是…