【浦语开源】深入探索:大模型全链路开源组件 InternLM Lagent,打造灵笔Demo实战指南

一、准备工作:

1、环境配置:

pip、conda换源:

pip临时换源:

pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple some-package# 这里的“https://mirrors.cernet.edu.cn/pypi/web/simple”是所换的源,“some-package”是你需要安装的包

设置pip默认源,避免每次下载依赖包都要加上一长串的国内源

pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple

conda换源:

镜像站提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch 等),各系统都可以通过修改用户目录下的
.condarc
文件来使用镜像站。

不同系统下的
.condarc
目录如下:

  • Linux
    :
    ${HOME}/.condarc
  • macOS
    :
    ${HOME}/.condarc
  • Windows
    :
    C:\Users\<YourUserName>\.condarc

注意:

  • Windows
    用户无法直接创建名为
    .condarc
    的文件,可先执行
    conda config --set show_channel_urls yes
    生成该文件之后再修改。
cat <<'EOF' > ~/.condarc
channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
EOF

更多详细内容可移步至
MirrorZ Help
查看

2、模型下载:

Huggingface:

使用 Hugging Face 官方提供的
huggingface-cli
命令行工具。安装依赖:

pip install -U huggingface_hub

安装好依赖包之后,执行以下代码:

import os
from huggingface_hub import hf_hub_download  # Load model directly # 下载模型
os.system('huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path')# resume-download:断点续下(断网也可继续下载)
# local-dir:本地存储路径。(linux 环境下需要填写绝对路径)hf_hub_download(repo_id="internlm/internlm-7b", filename="config.json")# repo_id: 模型的名称
# filename: 下载的文件名称

ModelScope:

安装依赖:

pip install modelscope==1.9.5
pip install transformers==4.35.2

安装完成后:

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='your path', revision='master')# cache_dir:最好写成绝对路径

OpenXLAB:

安装依赖:

pip install -U openxlab

执行代码:

from openxlab.model import download
download(model_repo='OpenLMLab/InternLM-7b', model_name='InternLM-7b', output='your local path')

二、InternLM智能对话 Demo:

1、准备硬件设备:显卡

目前显卡比较短缺,各位大佬各显神通吧,这里以
InternStudio
为例

2、进入开发机配置环境:

进入
conda
环境之后,使用以下命令从本地克隆一个已有的
pytorch 2.0.1
的环境,运行时间可能比较长,耐心等待

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
conda create --name internlm-demo --clone=/root/share/conda_envs/internlm-base

然后用下面命令激活虚拟环境,并安装所需环境:

conda activate internlm-demo————————————————————————————demo所需的环境依赖
# 升级pip
python -m pip install --upgrade pippip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

3、模型下载:

根据之前介绍的模型下载的三种方式都可以实现模型的下载,但是速度相对较慢,这里我使用的是
InternStudio
平台的
share
目录下已经为我们准备好的
InternLM
模型。

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

4、代码准备:


/root
路径下新建
code
目录,然后切换路径, clone 代码

cd /root/code
git clone https://gitee.com/internlm/InternLM.git## 切换 commit 版本,可以让大家更好的复现
cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17


/root/code/InternLM/web_demo.py
中 29 行和 33 行的模型更换为本地的
/root/model/Shanghai_AI_Laboratory/internlm-chat-7b

5、运行:

(1)终端运行:


/root/code/InternLM
目录下新建一个
cli_demo.py
文件,将以下代码填入其中:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text = input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

然后在终端运行:python /root/code/InternLM/cli_demo.py  即可

(2)web运行:

运行
/root/code/InternLM
目录下的
web_demo.py
文件,输入以下命令后,l利用SSH密钥将端口映射到本地。在本地浏览器输入
http://127.0.0.1:6006
即可。

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

三、Lagent智能工具demo调用:

1、环境准备:

Lagent所需环境和InternLM环境一直,若运行环境已经安装好依赖包可直接跳过:

# 升级pip
python -m pip install --upgrade pippip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

2、模型下载:

Lagnet是智能体构建的工具,基础模型可以直接使用InterLM模型,无需重复下载。

3、代码准备:

切换路径到
/root/code
克隆
lagent
仓库,并通过
pip install -e .
源码安装
Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装


/root/code/lagent/examples/react_web_demo.py
内容替换为以下代码:

import copy
import osimport streamlit as st
from streamlit.logger import get_loggerfrom lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLMclass SessionState:def init_state(self):"""Initialize session state variables."""st.session_state['assistant'] = []st.session_state['user'] = []#action_list = [PythonInterpreter(), GoogleSearch()]action_list = [PythonInterpreter()]st.session_state['plugin_map'] = {action.name: actionfor action in action_list}st.session_state['model_map'] = {}st.session_state['model_selected'] = Nonest.session_state['plugin_actions'] = set()def clear_state(self):"""Clear the existing session state."""st.session_state['assistant'] = []st.session_state['user'] = []st.session_state['model_selected'] = Noneif 'chatbot' in st.session_state:st.session_state['chatbot']._session_history = []class StreamlitUI:def __init__(self, session_state: SessionState):self.init_streamlit()self.session_state = session_statedef init_streamlit(self):"""Initialize Streamlit's UI settings."""st.set_page_config(layout='wide',page_title='lagent-web',page_icon='./docs/imgs/lagent_icon.png')# st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')st.sidebar.title('模型控制')def setup_sidebar(self):"""Setup the sidebar for model and plugin selection."""model_name = st.sidebar.selectbox('模型选择:', options=['gpt-3.5-turbo','internlm'])if model_name != st.session_state['model_selected']:model = self.init_model(model_name)self.session_state.clear_state()st.session_state['model_selected'] = model_nameif 'chatbot' in st.session_state:del st.session_state['chatbot']else:model = st.session_state['model_map'][model_name]plugin_name = st.sidebar.multiselect('插件选择',options=list(st.session_state['plugin_map'].keys()),default=[list(st.session_state['plugin_map'].keys())[0]],)plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]if 'chatbot' in st.session_state:st.session_state['chatbot']._action_executor = ActionExecutor(actions=plugin_action)if st.sidebar.button('清空对话', key='clear'):self.session_state.clear_state()uploaded_file = st.sidebar.file_uploader('上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])return model_name, model, plugin_action, uploaded_filedef init_model(self, option):"""Initialize the model based on the selected option."""if option not in st.session_state['model_map']:if option.startswith('gpt'):st.session_state['model_map'][option] = GPTAPI(model_type=option)else:st.session_state['model_map'][option] = HFTransformerCasualLM('/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')return st.session_state['model_map'][option]def initialize_chatbot(self, model, plugin_action):"""Initialize the chatbot with the given model and plugin actions."""return ReAct(llm=model, action_executor=ActionExecutor(actions=plugin_action))def render_user(self, prompt: str):with st.chat_message('user'):st.markdown(prompt)def render_assistant(self, agent_return):with st.chat_message('assistant'):for action in agent_return.actions:if (action):self.render_action(action)st.markdown(agent_return.response)def render_action(self, action):with st.expander(action.type, expanded=True):st.markdown("<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插    件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501+ action.type + '</span></p>',unsafe_allow_html=True)st.markdown("<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501+ action.thought + '</span></p>',unsafe_allow_html=True)if (isinstance(action.args, dict) and 'text' in action.args):st.markdown("<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501unsafe_allow_html=True)st.markdown(action.args['text'])self.render_action_results(action)def render_action_results(self, action):"""Render the results of action, including text, images, videos, andaudios."""if (isinstance(action.result, dict)):st.markdown("<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501unsafe_allow_html=True)if 'text' in action.result:st.markdown("<p style='text-align: left;'>" + action.result['text'] +'</p>',unsafe_allow_html=True)if 'image' in action.result:image_path = action.result['image']image_data = open(image_path, 'rb').read()st.image(image_data, caption='Generated Image')if 'video' in action.result:video_data = action.result['video']video_data = open(video_data, 'rb').read()st.video(video_data)if 'audio' in action.result:audio_data = action.result['audio']audio_data = open(audio_data, 'rb').read()st.audio(audio_data)def main():logger = get_logger(__name__)# Initialize Streamlit UI and setup sidebarif 'ui' not in st.session_state:session_state = SessionState()session_state.init_state()st.session_state['ui'] = StreamlitUI(session_state)else:st.set_page_config(layout='wide',page_title='lagent-web',page_icon='./docs/imgs/lagent_icon.png')# st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')model_name, model, plugin_action, uploaded_file = st.session_state['ui'].setup_sidebar()# Initialize chatbot if it is not already initialized# or if the model has changedif 'chatbot' not in st.session_state or model != st.session_state['chatbot']._llm:st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model, plugin_action)for prompt, agent_return in zip(st.session_state['user'],st.session_state['assistant']):st.session_state['ui'].render_user(prompt)st.session_state['ui'].render_assistant(agent_return)# User input form at the bottom (this part will be at the bottom)# with st.form(key='my_form', clear_on_submit=True):if user_input := st.chat_input(''):st.session_state['ui'].render_user(user_input)st.session_state['user'].append(user_input)# Add file uploader to sidebarif uploaded_file:file_bytes = uploaded_file.read()file_type = uploaded_file.typeif 'image' in file_type:st.image(file_bytes, caption='Uploaded Image')elif 'video' in file_type:st.video(file_bytes, caption='Uploaded Video')elif 'audio' in file_type:st.audio(file_bytes, caption='Uploaded Audio')# Save the file to a temporary location and get the pathfile_path = os.path.join(root_dir, uploaded_file.name)with open(file_path, 'wb') as tmpfile:tmpfile.write(file_bytes)st.write(f'File saved at: {file_path}')user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(file_path=file_path, user_input=user_input)agent_return = st.session_state['chatbot'].chat(user_input)st.session_state['assistant'].append(copy.deepcopy(agent_return))logger.info(agent_return.inner_steps)st.session_state['ui'].render_assistant(agent_return)if __name__ == '__main__':root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))root_dir = os.path.join(root_dir, 'tmp_dir')os.makedirs(root_dir, exist_ok=True)main()

4、web demo运行:

同样,建立ssh远程连接,在浏览器输入
http://127.0.0.1:6006
即可。

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

确实厉害,连MBA的题目都能轻松应对。

四、浦语·灵笔图文理解创作 Demo:

1、基础配置:

和之前两个demo一样的流程,从环境配置到模型下载

# 进入 conda 环境之后,使用以下命令从本地克隆一个已有的pytorch 2.0.1 的环境
conda create --name xcomposer-demo --clone=/root/share/conda_envs/internlm-base# 激活环境
conda activate xcomposer-demo#安装依赖:
pip install transformers==4.33.1 
pip install timm==0.4.12 
pip install sentencepiece==0.1.99 
pip install gradio==3.44.4 
pip install markdown2==2.4.10 
pip install xlsxwriter==3.1.2 
pip install einops accelerate# 模型下载:
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

2、代码准备:

又是老朋友了

cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

3、运行web demo:

终端运行以下代码,同样是在完成ssh连接之后:

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \--folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \--num_gpus 1 \--port 6006

num_gpus 指的是使用gpu的数量,vgpu-smi可以查看gpu的使用情况

五、SSH远程服务连接:

这里只是简单的介绍以下本次demo调用中使用的demo配置,具体可以看博客:
ssh用法及命令_ssh命令大全-CSDN博客

1、在本地机器上打开
Power Shell
终端。在终端中,运行以下命令来生成 SSH 密钥对:

ssh-keygen -t rsa##-t表示类型选项,这里采用rsa加密算法

2、按
Enter
键接受默认值或输入自定义路径 ,默认情况下是在
~/.ssh/
目录中。(其中有一个提示是要求设置私钥口令passphrase,不设置则为空,这里看心情吧,如果不放心私钥的安全可以设置一下)执行结束以后会在
/home/当前用户 目录下
生成一个
.ssh 文件夹
,其中包含
私钥文件 id_rsa

公钥文件 id_rsa.pub

3、通过系统自带的
cat
工具查看文件内容:

cat ~\.ssh\id_rsa.pub
# ~ 是用户主目录的简写,.ssh 是SSH配置文件的默认存储目录,id_rsa.pub 是 SSH 公钥文件的默认名称。所以,cat ~\.ssh\id_rsa.pub 的意思是查看用户主目录下的 .ssh 目录中的 id_rsa.pub 文件的内容。

4、将公钥复制到剪贴板中,然后回到
InternStudio
控制台,点击配置 SSH Key。

在本

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33090

地终端输入以下指令
.6006
是在服务器中打开的端口,而
33090
是根据开发机的端口进行更改

注意:再这些操作中可能会出现多次warning,个人经验是只要没报错就继续运行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/35882.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI绘画Stable Diffusion人物背景替换实操教程,让创意无限延伸

大家好&#xff0c;我是画画的小强 Stable Diffusion以其强大的能力可以实现人物背景的更换。本文将带你深入了解如何利用Stable Diffusion中的Inpaint Anything插件快速且精准地实现人物背景的替换&#xff0c;从而让你的图片焕发新生。 前期准备 本文会使用到Inpaint Anyt…

观星观景大屏呈现 实时拍摄长焦定格 当当狸智能天文望远镜TW2来啦

《宇宙的奇迹》中有这样一句话&#xff1a;“我们与那些遥远星系息息相关&#xff0c;无论它们是如何与我们天各一方&#xff0c;那些经过数十亿年旅行到达地球的光线&#xff0c;终究会把我们联系在一起”。 想象一下—— 等到繁星低垂&#xff0c;月光皎洁之时&#xff0c;…

Linux系统安装和卸载nginx

&#x1f4d6;Linux系统安装和卸载nginx ✅下载✅安装✅启动nginx✅安装成系统服务✅常见问题&#xff1a;80端口被占用了✅卸载✅目录结构 以下介绍的是以源码编译安装方式&#xff1a; ✅下载 官方地址&#xff1a;https://nginx.org/en/download.html 123云盘地址&#x…

基于springboot、vue影院管理系统

设计技术&#xff1a; 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatisvue 工具&#xff1a;IDEA、Maven、Navicat 主要功能&#xff1a; 影城管理系统的主要使用者分为管理员和用户&#xff0c; 实现功能包括管理员&#xff1a; 首页…

ELK集群设置密码

一、软件安装清单 elasticsearch7.17.22logstash7.17.22kibana:7.17.22filebeat7.17.22elasticsearch-head:5 二、配置 生成证书 进入elasticsearch容器 bin/elasticsearch-certutil cert -out /usr/share/elasticsearch/config/elastic-certificates.p12 -pass将证书拷贝…

qt for android 工程添加AndroidManifest.xml 文件

1.选择左边图形栏目中的Projects&#xff0c;在Build steps下的Build Android APK中Details 2.点击Create Templates&#xff0c;并勾选 此时在工程下面会多出一个文件夹android 3.将这个android的中所有文件加入工程中&#xff0c;编辑.pro 4.通过QT 图形化编辑设置属性&#…

JAVA【案例5-5】二月天

【二月天】 1、案例描述 二月是一个有趣的月份&#xff0c;平年的二月有28天&#xff0c;闰年的二月由29天。闰年每四年一次&#xff0c;在判断闰年时&#xff0c;可以使用年份除于4&#xff0c;如果能够整除&#xff0c;则该年是闰年。 本案例要求编写一个程序&#xff0c;…

python e怎么表示

exp()方法返回x的指数&#xff0c;ex。 语法 以下是 exp() 方法的语法: import math math.exp( x ) 注意&#xff1a;exp()是不能直接访问的&#xff0c;需要导入 math 模块&#xff0c;通过静态对象调用该方法。 参数 x -- 数值表达式。 返回值 返回x的指数&#xff0c;…

01背包问题求解

来源于 https://kamacoder.com/problempage.php?pid1046 使用动态规划&#xff0c;五步走 1.定义状态数组和具体状态含义&#xff1a; dp是个二维数组&#xff0c;第一维代表物品索引&#xff0c;第二维代表背包空间状态。 dp[i][j]是指物品i 在背包空间j 的情况下所能放的…

【redis】redis安装

1、安装前准备 1.1环境准备 VMware安装 参考博文&#xff1a;【VMware】VMware虚拟机安装_配置_使用教程_选择虚拟机配置选项,设置dvd镜像为 点击启动虚拟机-CSDN博客 安装centOS的linux操作系统 xshell xftp 参考博文&#xff1a;【Linux】Xshell和Xftp简介_安装_VMwar…

最新版Git安装指南使用指南

首先&#xff0c;访问Git的官方网站https://git-scm.com下载适用于您操作系统的安装包。您也可以选择使用阿里云镜像来加速下载过程。 也可以用国内地址下载https://pan.quark.cn/s/0293d76e58bchttps://pan.quark.cn/s/0293d76e58bc安装过程 在这里插入图片描述 2、点击“…

vue3 Cesium 离线地图

源码&#xff1a;cesium-demo: Cesium示例工程&#xff0c;基于vue3 1、vite-plugin-cesium 是一个专门为 Vite 构建工具定制的插件&#xff0c;用于在 Vite 项目中轻松使用 Cesium 库。它简化了在 Vite 项目中集成 Cesium 的过程。 npm i cesium vite-plugin-cesium vite -D…

[leetcode]k-th-smallest-in-lexicographical-order 字典序的第K小数字

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int getSteps(int curr, long n) {int steps 0;long first curr;long last curr;while (first < n) {steps min(last, n) - first 1;first first * 10;last last * 10 9;}return steps;}int find…

WEB界面上使用ChatGPT

&#xff08;作者&#xff1a;陈玓玏&#xff09; 开源项目&#xff0c;欢迎star哦&#xff0c;https://github.com/tencentmusic/cube-studio 随着大模型不断发展&#xff0c;现在无论写代码&#xff0c;做设计&#xff0c;甚至老师备课、评卷都可以通过AI大模型来实现了&…

开发小技巧Tips-----在Idea中配置nacos/redis等

背景&#xff1a; 进入了一个新的项目开发&#xff0c;领导为了加快开发速度&#xff08;加快调试的速度&#xff09;&#xff0c;让我们在本地启动服务&#xff0c;然后给了我一堆数据就走了。坏了坏了&#xff0c;啥意思啊&#xff0c;自己开发的时候本地就是直接点击一下run…

在vscode 中ssh连接虚拟ubuntu,不能使用code打开文件

这是参考别人的文章&#xff1a;https://blog.csdn.net/weixin_44465434/article/details/130035032找到vscode的版本信息&#xff0c;提交后面是需要的打开home/(用户)/.bashrc&#xff0c;添加环境变量 export PATH"~/.vscode-server/bin/5437499feb04f7a586f677b155b03…

江协科技51单片机学习- p16 矩阵键盘

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…

LeetCode 算法:验证二叉搜索树 c++

原题链接&#x1f517;&#xff1a;验证二叉搜索树 难度&#xff1a;中等⭐️⭐️ 题目 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左 子树 只包含 小于 当前节点的数。节点的右子树只包含 大于…

J1939与CAN标准报文的区别

J1939报文:J1939是在CAN2.0B(扩展CAN)的基础上,对仲裁场部分的29位ID的重新解释,其它部分完全一样。 29位ID分为:3位的优先级、8位的PF(帧格式)、8位的PS(帧扩展)、8位的SA(源地址)、1位的DP(Data Page数据页)、1位的保留位。 其中1位的DP、8位的PF、8位的PS组成…

数字化世界的守卫之防火墙

在这个数字化的时代&#xff0c;我们的电脑和手机就像是一座座繁华的城市&#xff0c;而病毒和黑客则是那些潜伏在暗处的敌人。但别担心&#xff0c;我们有一群忠诚的守卫——“防火墙”&#xff0c;它们日夜守护着我们的数字家园。 1. 病毒&#xff1a;数字世界的“瘟疫” 想象…