Python22 Pandas库

Pandas 是一个Python数据分析库,它提供了高性能、易于使用的数据结构和数据分析工具。这个库适用于处理和分析输入数据,常见于统计分析、金融分析、社会科学研究等领域。

图片

1.Pandas的核心功能

Pandas 库的核心功能包括:

1.数据结构:Pandas 提供了两种主要的数据结构——DataFrame 和 SeriesDataFrame 是一个表格型的数据结构,可以想象成一个关系型数据表,具有可变的行和列。Series 是一个一维的标签数组,能够保存任何数据类型(整数、字符串、浮点数等)。

2.数据操作:Pandas 支持对数据进行插入、删除、合并、切片、聚合和重塑等多种操作。

3.处理缺失数据:Pandas 能够轻松处理缺失数据(例如:NaN)。

4.文件操作:Pandas 支持直接从或保存到多种文件格式如 CSV、Excel、SQL 数据库以及 HDF5 格式。

5.时间序列分析:Pandas 对时间序列数据有优秀的处理能力,能够进行日期范围生成、频率转换、移动窗口统计等操作。

因此,Pandas 是数据科学和量化分析领域中不可或缺的工具之一,用于数据清洗、分析以及准备数据用于进一步的统计或机器学习处理。

2.Pandas的使用

(1)Series数据结构

Series 对象是Pandas库中的基本数据结构之一,它主要用于单维度的数据集合(整数、浮点数、字符串、Python 对象等)。这种数据结构广泛应用于数据分析、数据清洗以及数据预处理过程中。该对象支持各种操作,如算术运算、聚合函数(求和、平均、最大值等)和条件过滤。同时,Series 非常适合处理时间序列数据。它可以有一个时间索引,这使得进行时间序列分析(如趋势分析、季节性调整等)变得更加直接和高效。此外,Pandas 还允许Series对象与其他数据结构(如DataFrame)无缝工作,可以方便地从 Series 转换到 DataFrame,反之亦然。

import pandas as pd  # 导入库并设置别名为‘pd’
import numpy as np  # 导入库并设置别名为‘np’
import matplotlib.pyplot as plt# 创建一个Series对象:传递一个数值列表作为参数,令Pandas使用默认索引
s=pd.Series([1,2,4,np.nan,6,7,9,10])  # 其中np.nan是numpy中的特殊值,表示非数字(Not a Number),它通常用于表示缺失值或未定义的数值
print(s)# 输出:
'''
0     1.0
1     2.0
2     4.0
3     NaN
4     6.0
5     7.0
6     9.0
7    10.0
dtype: float64
'''

(2)创建DataFrame对象

DataFrame 是一个二维的、表格型的数据结构,它可以存储多种类型的数据(整数、浮点数、字符串、Python 对象等),并且具有行和列的标签。

# 创建一个DataFrame对象:传递datetime索引和列标签的Numpy数组作为参数
# 首先创建一个时间序列,代码生成一个DatetimeIndex,包含从2013-01-01到2013-01-06的六个连续日期。
dates=pd.date_range('20130101',periods=6)
print(dates)
#创建DataFrame对象,指定index和columns标签
df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))  # 生成一个6行4列的列表,元素是从标准正态分布中抽取的随机数
print(df)# 输出:
'''
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')A         B         C         D
2013-01-01 -1.357961  0.850011 -0.636005  0.425649
2013-01-02  0.144545 -0.353026  0.128698 -0.038226
2013-01-03 -0.690415  0.217009 -0.038996 -1.387236
2013-01-04 -0.696815 -1.212856 -0.177951 -0.218372
2013-01-05  0.697114 -1.213185 -1.968390  0.825755
2013-01-06  1.019140 -0.733800  1.117218  0.990784
'''

查看数据:

# 观察数据
# 查看一个DataFrame对象的前几行和最后几行
print(df.head())
print(df.tail(3))
# 默认情况下 .head()和.tail()输出首尾的前5行,也可以指定输出行数
# 输出:
'''A         B         C         D
2013-01-01 -1.357961  0.850011 -0.636005  0.425649
2013-01-02  0.144545 -0.353026  0.128698 -0.038226
2013-01-03 -0.690415  0.217009 -0.038996 -1.387236
2013-01-04 -0.696815 -1.212856 -0.177951 -0.218372
2013-01-05  0.697114 -1.213185 -1.968390  0.825755A         B         C         D
2013-01-04 -0.696815 -1.212856 -0.177951 -0.218372
2013-01-05  0.697114 -1.213185 -1.968390  0.825755
2013-01-06  1.019140 -0.733800  1.117218  0.990784'''

查看列表索引、列表标签、值并统计:

#查看索引
print(df.index)
#列表签
print(df.columns)
#数值
print(df.values)
#统计
print(df.describe())'''
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')
Index(['A', 'B', 'C', 'D'], dtype='object')
[[-1.35796107  0.85001062 -0.63600535  0.4256489 ][ 0.14454457 -0.35302596  0.128698   -0.03822612][-0.69041478  0.217009   -0.03899589 -1.38723616][-0.696815   -1.21285587 -0.17795143 -0.21837225][ 0.69711448 -1.21318519 -1.96839039  0.82575471][ 1.01914038 -0.73379976  1.11721757  0.99078445]]A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean  -0.147399 -0.407641 -0.262571  0.099726
std    0.918851  0.822011  1.016201  0.867018
min   -1.357961 -1.213185 -1.968390 -1.387236
25%   -0.695215 -1.093092 -0.521492 -0.173336
50%   -0.272935 -0.543413 -0.108474  0.193711
75%    0.558972  0.074500  0.086775  0.725728
max    1.019140  0.850011  1.117218  0.990784
'''

灵活使用DataFrame对象如转置、排序:

# 转置
print(df.T)
# 按列排序,逐步递减
print(df.sort_index(axis=1,ascending=False))
# 按值排序,‘B’列逐行递增
print(df.sort_values(by='B'))# 输出:
'''2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A   -1.357961    0.144545   -0.690415   -0.696815    0.697114    1.019140
B    0.850011   -0.353026    0.217009   -1.212856   -1.213185   -0.733800
C   -0.636005    0.128698   -0.038996   -0.177951   -1.968390    1.117218
D    0.425649   -0.038226   -1.387236   -0.218372    0.825755    0.990784D         C         B         A
2013-01-01  0.425649 -0.636005  0.850011 -1.357961
2013-01-02 -0.038226  0.128698 -0.353026  0.144545
2013-01-03 -1.387236 -0.038996  0.217009 -0.690415
2013-01-04 -0.218372 -0.177951 -1.212856 -0.696815
2013-01-05  0.825755 -1.968390 -1.213185  0.697114
2013-01-06  0.990784  1.117218 -0.733800  1.019140A         B         C         D
2013-01-05  0.697114 -1.213185 -1.968390  0.825755
2013-01-04 -0.696815 -1.212856 -0.177951 -0.218372
2013-01-06  1.019140 -0.733800  1.117218  0.990784
2013-01-02  0.144545 -0.353026  0.128698 -0.038226
2013-01-03 -0.690415  0.217009 -0.038996 -1.387236
2013-01-01 -1.357961  0.850011 -0.636005  0.425649'''

打印特定行或特定列的数据:

print(df["A"])  # 与df.A相同,打印A列
print(df.A)# 使用[]分割DataFrame
print(df[0:3])  # 选取0-2行即前三行进行打印print(df['20130102':'20130104'])  # 选取从2013-01-02到2013-01-04的行打印,包含开始和结束日期# 输出:
'''
2013-01-01   -1.357961
2013-01-02    0.144545
2013-01-03   -0.690415
2013-01-04   -0.696815
2013-01-05    0.697114
2013-01-06    1.019140
Freq: D, Name: A, dtype: float64
2013-01-01   -1.357961
2013-01-02    0.144545
2013-01-03   -0.690415
2013-01-04   -0.696815
2013-01-05    0.697114
2013-01-06    1.019140
Freq: D, Name: A, dtype: float64A         B         C         D
2013-01-01 -1.357961  0.850011 -0.636005  0.425649
2013-01-02  0.144545 -0.353026  0.128698 -0.038226
2013-01-03 -0.690415  0.217009 -0.038996 -1.387236A         B         C         D
2013-01-02  0.144545 -0.353026  0.128698 -0.038226
2013-01-03 -0.690415  0.217009 -0.038996 -1.387236
2013-01-04 -0.696815 -1.212856 -0.177951 -0.218372'''

按照标签选择数据:

# 按标签选择,选中一行
print(df.loc[dates[0]])
# 标签选中复制数列(所有行,输出只显示前5行)
print(df.loc[:,['A','B']])
# 行,列同时切分(包括起止点)
print(df.loc['20130102':'20130104',['A','B']])
# 返回一个元素(两种等效)
print(df.loc[dates[0],'A'])
print(df.at[dates[0],'A'])# 输出:
'''
A   -0.096276
B   -0.840584
C   -0.425912
D    0.052560
Name: 2013-01-01 00:00:00, dtype: float64A         B
2013-01-01 -0.096276 -0.840584
2013-01-02  1.790104  0.303063
2013-01-03  1.326804 -0.272038
2013-01-04  0.843435 -0.475088
2013-01-05  1.207635 -0.462329
2013-01-06 -0.374454  0.297715A         B
2013-01-02  1.790104  0.303063
2013-01-03  1.326804 -0.272038
2013-01-04  0.843435 -0.475088
-0.09627595683105973
-0.09627595683105973
'''

按照位置选择数据:

# 按位置选择
# 位置索引为3的列,(从0开始,所以其实是第4列)
print(df)
print(df.iloc[3])
# 按位置索引分割DataFrame
print(df.iloc[3:5,0:2])
# 指定定位一个特定元素
print(df.iloc[1,1])
print(df.iat[1,1])# 输出:
'''A         B         C         D
2013-01-01 -0.096276 -0.840584 -0.425912  0.052560
2013-01-02  1.790104  0.303063 -0.747674 -0.304015
2013-01-03  1.326804 -0.272038 -0.602406  1.508931
2013-01-04  0.843435 -0.475088  0.241588  1.428372
2013-01-05  1.207635 -0.462329 -0.080737 -1.677173
2013-01-06 -0.374454  0.297715 -0.815562 -0.574843
A    0.843435
B   -0.475088
C    0.241588
D    1.428372
Name: 2013-01-04 00:00:00, dtype: float64A         B
2013-01-04  0.843435 -0.475088
2013-01-05  1.207635 -0.462329
0.30306280237692435
0.30306280237692435
'''

使用布尔值进行索引:

# 布尔值索引
print(df.A>0)
# 使用.isin函数过滤数据
df2=df.copy()
df2
# 输出:
'''
2013-01-01    False
2013-01-02     True
2013-01-03     True
2013-01-04     True
2013-01-05     True
2013-01-06    False
Freq: D, Name: A, dtype: boolA         B         C         D
2013-01-01 -0.096276 -0.840584 -0.425912  0.052560
2013-01-02  1.790104  0.303063 -0.747674 -0.304015
2013-01-03  1.326804 -0.272038 -0.602406  1.508931
2013-01-04  0.843435 -0.475088  0.241588  1.428372
2013-01-05  1.207635 -0.462329 -0.080737 -1.677173
2013-01-06 -0.374454  0.297715 -0.815562 -0.574843
'''

添加数据并打印:

df2['E']=['one','one','two','three','four','three'] # 添加一列数据
# 提取df2中'E'中包含['two','four']的行
print(df2[df2['E'].isin(['two','four'])])# 输出:
'''A         B         C         D     E
2013-01-03  1.326804 -0.272038 -0.602406  1.508931   two
2013-01-05  1.207635 -0.462329 -0.080737 -1.677173  four'''

添加和修改数据:

# 为DataFrame创建一个新的列,其值为时间顺序的索引值
s1=pd.Series([1,2,3,4,5,6],index=pd.date_range('20130101',periods=6))
print(s1)
df['F']=s1
# 按标签赋值
df.at[dates[0],'A']=0
# 按索引赋值
df.iat[0,1]=0
# 使用numpy数组赋值
df.loc[:,'D']=np.array([5]*len(df))
print(len(df))
print(df)
# 输出:
'''A         B         C         D     E
2013-01-03  1.326804 -0.272038 -0.602406  1.508931   two
2013-01-05  1.207635 -0.462329 -0.080737 -1.677173  four'''

添加数据并打印:

#创建Dataframe对象,以dates[0:4]为索引,在df基础上再加一个新的‘E’列
df1=df.reindex(index=dates[0:4],columns=list(df.columns)+['E'])
#将'E'列的前两个行设为1
df1.loc[dates[0]:dates[1],'E']=1
print(df1)
# 输出:
'''A         B         C         D     E
2013-01-03  1.326804 -0.272038 -0.602406  1.508931   two
2013-01-05  1.207635 -0.462329 -0.080737 -1.677173  four'''

处理缺失数据:

# 处理缺失数据
# 调用 dropna 方法来删除 DataFrame 中含有任何 NaN 值的行
df1.dropna(how='any')
# 使用5填充缺省值
df1.fillna(value=5)
# 判断df1中的值是否为缺失数据,返回True/False
pd.isnull(df1)# 输出:
'''A      B      C      D      E
2013-01-01  False  False  False  False  False
2013-01-02  False  False  False  False  False
2013-01-03  False  False  False  False   True
2013-01-04  False  False  False  False   True
'''

构建一个数据表:

df=pd.DataFrame([[1,1,1,1],[2,2,2,2],[3,3,3,3]],columns=['col1','col2','col3','col4'])
df# 输出:
'''col1  col2  col3  col4
0     1     1     1     1
1     2     2     2     2
2     3     3     3     3'''

计算每一列数据平均值:

print(df.mean(axis=0))  # mean(axis=0)计算的是每一列平均值, # 输出:
'''col1    2.0
col2    2.0
col3    2.0
col4    2.0
dtype: float64
'''

添加数据并打印:

print(df.mean(axis=1))  # mean(axis=1)计算每一行数据平均值# 输出:
'''
0    1.0
1    2.0
2    3.0
dtype: float64
'''

删除某行:

print(df.drop(0,axis=0))  # drop(0,axis=0)删除第0行, # 输出:
'''col1  col2  col3  col4
1     2     2     2     2
2     3     3     3     3'''

删除某列:

print(df.drop('col1',axis=1))  #drop([‘col1’],axis=1)删除列# 输出:
'''col2  col3  col4
0     1     1     1
1     2     2     2
2     3     3     3
'''

重新设置索引:

df = pd.DataFrame([('bird',    389.0),('bird',     24.0),('mammal',   80.5),('mammal', np.nan)],index=['falcon', 'parrot', 'lion', 'monkey'],columns=('class', 'max_speed'))
df
# 输出:
'''class  max_speed
falcon    bird      389.0
parrot    bird       24.0
lion    mammal       80.5
monkey  mammal        NaN
'''

舍弃旧的索引:

# 舍弃旧的索引,索引重置为默认的整数索引
df.reset_index(drop=True)  # 原来的索引将被完全丢弃,不会保留为数据列# 输出:
'''class  max_speed
0    bird      389.0
1    bird       24.0
2  mammal       80.5
3  mammal        NaN
'''

改变表中的数据:

# 改变df
df.reset_index(drop=True,inplace=True)  # 参数inplace=True决定操作是直接在原DataFrame(df)上修改还是返回一个新的DataFrame
df # 此时df已经改变# 输出:
'''class  max_speed
0    bird      389.0
1    bird       24.0
2  mammal       80.5
3  mammal        NaN
'''

以上内容总结自网络,如有帮助欢迎转发,我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/35519.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ODYSSEE加速电机仿真优化

由于对低碳社会的强烈需求,电动汽车(EV)和混合动力汽车(HEV)的数量正在迅速增长。新能源汽车的主要部件是电池、逆变器和电机。电机市场的规模也将不断扩大。为了提高EV的性能,对电机设计工程师的要求越来越高。 除了EV市场,协作机器人市场也…

【Linux】gdb调试器

一、gdb调试器背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g 选项 二、安装gdb yum install gdb三、使用gdb 在Linux当中g…

Spark运行spark-shell与hive运行时均报错的一种解决方案

环境按照尚硅谷的配置的。 在运行hive的时候,报错代码为30041,无法执行insert语句。 在运行spark-shell的时候,报错,无法进入到shell脚本中。 可能的问题: 对集群设置的域名与集群的主机名称不一致。 例如:…

Cesium入门:Camera的关键知识点

作者: 还是大剑师兰特 ,曾为美国某知名大学计算机专业研究生,现为国内GIS领域高级前端工程师,CSDN知名博主,深耕openlayers、leaflet、mapbox、cesium,canvas,echarts等技术开发,欢迎加微信(gis-dajianshi),一起交流。 查看本专栏目录 - 本文是第 078篇文章 文章目录…

快速高效的菲律宾海运攻略

快速高效的菲律宾海运攻略 【14天送达】菲律宾海运攻略来了!你是不是也在为如何将机器发货到菲律宾而烦恼?别担心,今天小编就为大家详细讲解一下整个流程! 第一步:准备货物和文件 首先确保你的机器包装完好无损&#x…

使用c++栈刷题时踩坑的小白错误

根据图片中提供的代码,可以发现以下三处错误: 错误原因:条件判断语句的逻辑错误。 代码行:if (res.top() ! e || res.empty())(第7行) 问题:如果 res 为空(res.empty() 为 true&…

mac卡牌游戏:堆叠大陆 Stacklands for Mac 中文安装包

Stacklands 是一款轻松益智的堆叠游戏。玩家需要在游戏中不断堆叠不同形状和大小的方块,使它们尽可能地稳定地堆放在一起。游戏中有多种不同的关卡和挑战,玩家需要通过合理的堆叠方式来完成每个关卡。游戏画面简洁明快,操作简单直观&#xff…

视频分享的二维码怎么做?多种视频可用的二维码制作技巧

视频分享的快捷操作技巧可以在二维码生成器上来制作,与传统分享方式相比用二维码的方法能够更快捷,有利于用户能够在不下载视频占用空间的同时,就能够扫描二维码观看视频内容。视频二维码能够应用于很多的场景下,那么制作一个视频…

Navicat Premium Lite绿色免费版

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl Navicat Premium Lite概述 Navicat 最近推出了一款名为 Navicat Premium Lite 的免费数据库管理开发工具,专为入门级用户设计。这款工具虽然在功能上与 Navicat…

新改进!LSTM与注意力机制结合,性能一整个拿捏住

众所周知,LSTM并不能很好地处理长序列和重要信息的突出,这导致在某些情况下性能不佳。而注意力机制模拟人类视觉注意力机制的特点可以很好地解决这个问题。 说具体点就是,注意力机制通过权重分布来决定应该关注输入序列中的哪些部分&#xf…

程序员学长 | 快速学会一个算法,RNN

本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。 原文链接:快速学会一个算法,RNN 今天给大家分享一个超强的算法模型,RNN 循环神经网络(Recurrent Neural Network, RNN&…

不花一分钱也能制作出高质量的宣传册

在当今竞争激烈的市场环境中,拥有一份高质量的宣传册对于企业或个人来说至关重要。它能帮助您在客户心中留下深刻印象,有效推广您的品牌或服务。但聘请专业设计师和印刷商制作宣传册往往需要不小的开支。那么,有没有既省钱又能做出高质量宣传…

flask水质监测预警系统-计算机毕业设计源码10148

摘 要 近些年来,对河道水位进行实时、准确的监测越来越受到广大人民群众的重视。然而要建立一个稳定的、可靠地、准确的城市河道水位远程监测系统,就必须要解决由人工监测向自动化监测的转变,使用新科技来进行设计。水质监测预警系统是以实际…

ardupilot开发 --- 坐标变换 篇

Good Morning, and in case I dont see you, good afternoon, good evening, and good night! 0. 一些概念1. 坐标系的旋转1.1 轴角法1.2 四元素1.3 基于欧拉角的旋转矩阵1.3.1 单轴旋转矩阵1.3.2 多轴旋转矩阵 2. 齐次变换矩阵3. visp实践 0. 一些概念 相关概念:旋…

charls抓包工具 mumu模拟器抓包apk

1.先安装mumu 官网添加链接描述 2.配置 设置,点进互联网,点编辑,选择手动代理 主机名写自己电脑的ip地址,端口随便,只要不被占用,一般参考其他人都是8888 3.下载charls 参考这个添加链接描述 先官网…

项目验收测试有必要找第三方软件测试机构吗?

在当今信息技术飞速发展的时代,软件测试成为了确保软件质量的重要环节。而在项目的验收测试中,很多企业都面临一个问题,那就是是否有必要找第三方软件测试机构进行验收测试?今天,我们就来探讨一下这个问题。 第三方软件测试机构…

【别再用Excel了!】这款免费可视化工具能帮你轻松提升效率

现代数据分析和展示的需求已经远远超出了传统工具的能力,尤其是在需要快速、直观和高效地处理复杂数据的情况下。山海鲸可视化通过其强大的功能和易用性,成为了设计师以及各类新手用户的理想选择。下面我就以一个可视化设计师的角度,和大家简…

2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等

6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。 Diffusion Models 1、Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation LlamaGen,是一个…

合合信息智能文档抽取:赋能不良资产管理行业的数字化转型

官.网地址:合合TextIn - 合合信息旗下OCR云服务产品 随着数字化浪潮的汹涌澎湃,全球各行各业正经历着前所未有的变革。人工智能技术的快速发展,以其独特的创新能力和应用潜力,正在深刻地改变着业务模式,推动产业效率的…

把动漫幻想变为现实:一键生成真实图像,让你的动漫梦想成为现实!

大家好我是安琪!你能想到一个动漫图片可以转换成真实图像吗?其实,这就是所谓的漫改真人。有很多非常出名的动漫画或者动漫剧,改成由真人去饰演,就叫做漫改影视。 对于很多的动漫爱好者来说,如果一部漫改影…