【OpenCV 图像处理 Python版】图像处理的基本操作

在这里插入图片描述

文章目录

  • 1.图像的 IO 操作
    • 1.1 图像读取 imread
    • 1.2 图像显示
      • 1.2.1 opencv 方式
      • 1.2.2 matplotlib 方式
    • 1.3 图像保存 imwrite
  • 2.绘制几何图形
      • 1. 绘制直线
      • 2. 绘制矩形
      • 3. 绘制圆形
      • 4. 绘制多边形
      • 5. 添加文字
  • 3.获取并修改图像中的像素点
    • 3.1 获取像素值
    • 3.2 修改像素值
    • 3.3 获取和修改区域像素值
  • 4.获取图像属性
    • 4.1 获取图像属性
      • 详细解释
    • 4.2 处理灰度图像
  • 5.图像通道的拆分与合并
    • 5.1 图像通道的拆分
    • 5.2 图像通道的合并
    • 5.3 修改单个通道并合并
  • 6.色彩空间的改变
      • 详细解释
      • 为什么需要将 HSV 和 Lab 图像,先转换回 RGB 格式再显示?
        • 1. `matplotlib` 期望的颜色格式是 RGB
        • 2. 可视化的直观性
        • 3. 避免误解

1.图像的 IO 操作

1.1 图像读取 imread

使用cv2.imread函数可以读取图像。该函数有两个参数:

  • 第一个参数是图像文件的路径
  • 第二个参数是读取模式,可以是以下几种:
    • cv2.IMREAD_COLOR:读取彩色图像(默认)。
    • cv2.IMREAD_GRAYSCALE:读取灰度图像。
    • cv2.IMREAD_UNCHANGED:读取图像,并包括图像的alpha通道。

示例

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像
# 读取彩色图像
image  = cv.imread('../images/iu.jpg', cv.IMREAD_COLOR)# 读取灰度图像
image_gray  = cv.imread('../images/iu.jpg', cv.IMREAD_GRAYSCALE)

1.2 图像显示

图像显示主要有两种方式:OpenCV 提供的 imshow 函数和 matplotlib 库提供的 imshow 函数。

1.2.1 opencv 方式

使用 cv2.imshow 函数可以显示图像。该函数有两个参数:

  • 第一个参数是窗口的名称。
  • 第二个参数是要显示的图像。

使用 cv2.waitKey 函数可以等待按键事件。该函数的参数是等待的时间(毫秒),如果设置为0,则无限等待。

使用cv2.destroyAllWindows函数可以关闭所有窗口。

示例

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像# 读取彩色图像
image  = cv.imread('../images/iu.jpg', cv.IMREAD_COLOR)# 读取灰度图像
image_gray  = cv.imread('../images/iu.jpg', cv.IMREAD_GRAYSCALE)# 2.显示图像
# 2.1 opencv 显示
cv.imshow('iu', image)
cv.imshow('gray', image_gray)
cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述

但是由于使用 opencv 提供的 imshow 函数时会创建新的窗口显示图像,不方便观察,所以后面一般会用另外一种方式。

1.2.2 matplotlib 方式

转换颜色空间

由于OpenCV 读取的图像是 BGR 格式,而 matplotlib 显示图像时使用的是 RGB 格式。因此,需要将 BGR 图像转换为 RGB 图像,此时也是有两种方式:

  1. 使用 cvtColor 进行转换;
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.imshow(image_rgb)
  1. 使用矩阵转换;
plt.imshow(image[:,:,::-1])

示例

第一种方式

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像# 读取彩色图像
image  = cv.imread('../images/iu.jpg', cv.IMREAD_COLOR)# 读取灰度图像
image_gray  = cv.imread('../images/iu.jpg', cv.IMREAD_GRAYSCALE)# 2.2 plt 读取# 第一种方式
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# 彩色图像显示
plt.imshow(image_rgb)
plt.show()

在这里插入图片描述
第二种方式

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像# 读取彩色图像
image  = cv.imread('../images/iu.jpg', cv.IMREAD_COLOR)# 读取灰度图像
image_gray  = cv.imread('../images/iu.jpg', cv.IMREAD_GRAYSCALE)# 2.2 plt 读取# 第二种方式
plt.imshow(image[:,:,::-1]) # 彩色图像显示
plt.show()

在这里插入图片描述

1.3 图像保存 imwrite

使用 cv2.imwrite 函数可以保存图像。该函数有两个参数:

  • 第一个参数是保存的文件路径。
  • 第二个参数是要保存的图像。

示例

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1.读取图像# 读取彩色图像
image  = cv.imread('../images/iu.jpg', cv.IMREAD_COLOR)# 读取灰度图像
image_gray  = cv.imread('../images/iu.jpg', cv.IMREAD_GRAYSCALE)# 2.显示图像
# 2.1 opencv 读取
# cv.imshow('iu', image)
# cv.imshow('gray', image_gray)
# cv.waitKey(0)
# cv.destroyAllWindows()# 2.2 plt 读取# 第一种方式
# image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# 彩色图像读取
# plt.imshow(image_rgb)# 第二种方式
# plt.imshow(image[:,:,::-1]) # 彩色图像读取
# plt.show()# 3.图像保存
cv.imwrite('../images/iu_rgb.jpg', image)
cv.imwrite('../images/iu_gray.jpg', image_gray)

2.绘制几何图形

在OpenCV中,可以使用一系列绘图函数在图像上绘制几何图形和添加文字。这些函数包括绘制直线、矩形、圆形、多边形以及添加文本等。以下是如何使用这些函数的详细步骤和示例代码。

1. 绘制直线

使用 cv2.line 函数可以在图像上绘制直线。该函数的参数包括:

  • 图像对象
  • 起点坐标
  • 终点坐标
  • 颜色(BGR格式)
  • 线条粗细(可选)
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 绘制一条白色直线
cv.line(image, (0, 0), (511, 511), (255, 255, 255), 5)# 显示图像
plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

2. 绘制矩形

使用 cv2.rectangle 函数可以在图像上绘制矩形。该函数的参数包括:

  • 图像对象
  • 左上角坐标
  • 右下角坐标
  • 颜色(BGR格式)
  • 线条粗细(如果为负值,则填充矩形)
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 绘制一条白色直线
cv.line(image, (0, 0), (511, 511), (255, 255, 255), 5)# 绘制一个绿色矩形
cv.rectangle(image, (100, 100), (400, 400), (0, 255, 0), 3)# 显示图像
plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

3. 绘制圆形

使用 cv2.circle 函数可以在图像上绘制圆形。该函数的参数包括:

  • 图像对象
  • 圆心坐标
  • 半径
  • 颜色(BGR格式)
  • 线条粗细(如果为负值,则填充圆形)
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 绘制一条白色直线
cv.line(image, (0, 0), (511, 511), (255, 255, 255), 5)# 绘制一个绿色矩形
cv.rectangle(image, (100, 100), (400, 400), (0, 255, 0), 3)# 绘制一个红色圆形
cv.circle(image, (256, 256), 100, (0, 0, 255), -1)# 显示图像
plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

4. 绘制多边形

使用 cv2.polylines 函数可以在图像上绘制多边形。该函数的参数包括:

  • 图像对象
  • 顶点坐标数组
  • 是否闭合
  • 颜色(BGR格式)
  • 线条粗细
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 绘制一条白色直线
cv.line(image, (0, 0), (511, 511), (255, 255, 255), 5)# 绘制一个绿色矩形
cv.rectangle(image, (100, 100), (400, 400), (0, 255, 0), 3)# 绘制一个红色圆形
cv.circle(image, (256, 256), 100, (0, 0, 255), -1)# 定义多边形的顶点
points = np.array([[100, 50], [200, 300], [70, 200], [50, 100]], np.int32)
points = points.reshape((-1, 1, 2))# 绘制一个蓝色多边形
cv.polylines(image, [points], True, (255, 0, 0), 3)
# 显示图像
plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

5. 添加文字

使用 cv2.putText 函数可以在图像上添加文字。该函数的参数包括:

  • 图像对象
  • 文字内容
  • 文字起点坐标
  • 字体类型
  • 字体大小
  • 颜色(BGR格式)
  • 线条粗细
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 绘制一条白色直线
cv.line(image, (0, 0), (511, 511), (255, 255, 255), 5)# 绘制一个绿色矩形
cv.rectangle(image, (100, 100), (400, 400), (0, 255, 0), 3)# 绘制一个红色圆形
cv.circle(image, (256, 256), 100, (0, 0, 255), -1)# 定义多边形的顶点
points = np.array([[100, 50], [200, 300], [70, 200], [50, 100]], np.int32)
points = points.reshape((-1, 1, 2))# 绘制一个蓝色多边形
cv.polylines(image, [points], True, (255, 0, 0), 3)
# 显示图像# 添加白色文字
cv.putText(image, 'Hello, OpenCV!', (50, 250), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

3.获取并修改图像中的像素点

在OpenCV中,可以非常方便地获取和修改图像中的像素点。图像在OpenCV中被表示为一个NumPy数组,因此可以使用NumPy的索引和切片操作来访问和修改图像的像素值。

3.1 获取像素值

要获取图像中某个像素点的值,可以使用数组索引。对于彩色图像,像素值是一个包含三个元素的数组,分别表示B、G、R三个通道的值。对于灰度图像,像素值是一个单一的灰度值。

示例

import cv2 as cv# 读取彩色图像
image = cv.imread('../images/iu.jpg')# 获取某个像素点的值 (x=100, y=100)
pixel_value = image[100, 100]
print("Pixel value at (100, 100):", pixel_value)# 获取某个像素点的蓝色通道值
blue_value = image[100, 100, 0]
print("Blue channel value at (100, 100):", blue_value)# 获取某个像素点的绿色通道值
green_value = image[100, 100, 1]
print("Green channel value at (100, 100):", green_value)# 获取某个像素点的红色通道值
red_value = image[100, 100, 2]
print("Red channel value at (100, 100):", red_value)

3.2 修改像素值

要修改图像中某个像素点的值,可以直接使用数组索引进行赋值操作。对于彩色图像,可以分别修改B、G、R三个通道的值。

示例

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 修改某个像素点的值 (x=100, y=100)
image[100, 100] = [0, 255, 0]  # 将该像素点设置为绿色# 修改某个像素点的蓝色通道值
image[100, 100, 0] = 255  # 将该像素点的蓝色通道值设置为255# 修改某个像素点的绿色通道值
image[100, 100, 1] = 0  # 将该像素点的绿色通道值设置为0# 修改某个像素点的红色通道值
image[100, 100, 2] = 0  # 将该像素点的红色通道值设置为0# 显示修改后的图像
plt.imshow(image[:,:,::-1])
plt.show()

3.3 获取和修改区域像素值

除了单个像素点,还可以获取和修改图像的某个区域。可以使用NumPy的切片操作来实现。

示例

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 创建一个空白图像
image = np.zeros((512, 512, 3), np.uint8)# 获取某个区域的像素值 (从x=100, y=100到x=200, y=200)
region = image[100:200, 100:200]
print("Region shape:", region.shape)# 修改某个区域的像素值 (从x=100, y=100到x=200, y=200)
image[100:200, 100:200] = [0, 255, 0]  # 将该区域设置为绿色# 显示修改后的图像
plt.imshow(image[:,:,::-1])
plt.show()

在这里插入图片描述

4.获取图像属性

在OpenCV中,可以通过读取图像的属性来获取图像的基本信息,例如图像的尺寸、通道数、数据类型等。这些属性可以帮助你了解图像的基本结构和格式,从而更好地进行图像处理和分析。

4.1 获取图像属性

以下是一些常用的图像属性及其获取方法:

  1. 图像的形状(尺寸):可以使用NumPy数组的 shape 属性来获取图像的尺寸。
  2. 图像的大小(像素数):可以使用NumPy数组的 size 属性来获取图像的总像素数。
  3. 图像的数据类型:可以使用NumPy数组的 dtype 属性来获取图像的数据类型。

示例

以下是一个示例代码,演示如何获取图像的这些属性:

import cv2 as cv# 读取图像
image = cv.imread('../images/iu.jpg')# 获取图像的形状(尺寸)
height, width, channels = image.shape
print("Height:", height)
print("Width:", width)
print("Channels:", channels)# 获取图像的大小(像素数)
size = image.size
print("Size (number of pixels):", size)# 获取图像的数据类型
dtype = image.dtype
print("Data type:", dtype)

详细解释

  1. 图像的形状(尺寸)

    • image.shape 返回一个包含三个元素的元组,分别表示图像的高度、宽度和通道数。
    • 对于灰度图像,image.shape 返回的元组只有两个元素,分别表示图像的高度和宽度。
  2. 图像的大小(像素数)

    • image.size 返回图像的总像素数,即高度、宽度和通道数的乘积。
  3. 图像的数据类型

    • image.dtype 返回图像的数据类型,通常是 uint8,表示每个像素值是一个8位无符号整数。

4.2 处理灰度图像

如果你处理的是灰度图像,获取属性的方式略有不同,因为灰度图像只有两个维度(高度和宽度)。

import cv2 as cv# 读取灰度图像
gray_image = cv.imread('example.jpg', cv.IMREAD_GRAYSCALE)# 获取图像的形状(尺寸)
height, width = gray_image.shape
print("Height:", height)
print("Width:", width)# 获取图像的大小(像素数)
size = gray_image.size
print("Size (number of pixels):", size)# 获取图像的数据类型
dtype = gray_image.dtype
print("Data type:", dtype)

5.图像通道的拆分与合并

在OpenCV中,可以使用 cv2.split 函数将彩色图像的通道拆分为单独的灰度图像,并使用 cv2.merge 函数将多个单通道图像合并为一个多通道图像。这些操作在图像处理和计算机视觉任务中非常常见和有用。

5.1 图像通道的拆分

cv2.split 函数可以将彩色图像的B、G、R三个通道拆分为三个单独的灰度图像。

示例

import cv2 as cv
import matplotlib.pyplot as plt# 读取彩色图像
image = cv.imread('../images/iu.jpg')# 拆分图像的B、G、R通道
b_channel, g_channel, r_channel = cv.split(image)# 将BGR图像转换为RGB图像
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# 显示原始图像和拆分后的通道图像
plt.figure(figsize=(10, 7))# 显示原始图像
plt.subplot(2, 2, 1)
plt.imshow(image_rgb)
plt.title('Original Image (RGB)')
plt.axis('off')# 显示蓝色通道
plt.subplot(2, 2, 2)
plt.imshow(b_channel, cmap='gray')
plt.title('Blue Channel')
plt.axis('off')# 显示绿色通道
plt.subplot(2, 2, 3)
plt.imshow(g_channel, cmap='gray')
plt.title('Green Channel')
plt.axis('off')# 显示红色通道
plt.subplot(2, 2, 4)
plt.imshow(r_channel, cmap='gray')
plt.title('Red Channel')
plt.axis('off')plt.show()

在这里插入图片描述

5.2 图像通道的合并

cv2.merge 函数可以将多个单通道图像合并为一个多通道图像。通常用于将拆分后的通道重新合并为一个彩色图像。

示例

import cv2 as cv
import matplotlib.pyplot as plt# 读取彩色图像
image = cv.imread('../images/iu.jpg')# 拆分图像的B、G、R通道
b_channel, g_channel, r_channel = cv.split(image)# 将BGR图像转换为RGB图像
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# 合并B、G、R通道
merged_image = cv.merge([b_channel, g_channel, r_channel])# 显示合并通道后的图像
plt.imshow(merged_image[:,:,::-1])
plt.show()

在这里插入图片描述

5.3 修改单个通道并合并

你还可以在拆分通道后对单个通道进行修改,然后再合并回去。例如,将图像的红色通道设置为零。

示例

import cv2 as cv
import matplotlib.pyplot as plt# 读取彩色图像
image = cv.imread('../images/iu.jpg')# 拆分图像的B、G、R通道
b_channel, g_channel, r_channel = cv.split(image)# 将BGR图像转换为RGB图像
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# # 将红色通道设置为零
# r_channel[:] = 0# 合并B、G、R通道
merged_image = cv.merge([b_channel, g_channel, r_channel])# 显示合并通道后的图像
plt.imshow(merged_image[:,:,::-1])
plt.show()

在这里插入图片描述

6.色彩空间的改变

在图像处理和计算机视觉中,改变色彩空间是一个常见的操作。OpenCV 提供了多种色彩空间转换函数,可以方便地在不同色彩空间之间进行转换。常见的色彩空间包括 BGRRGBHSVLab 等。

OpenCV 提供了 cv.cvtColor 函数来进行色彩空间的转换。以下是一些常见的色彩空间转换:

  • BGRRGBcv.COLOR_BGR2RGB
  • BGR灰度cv.COLOR_BGR2GRAY
  • BGRHSVcv.COLOR_BGR2HSV
  • BGRLabcv.COLOR_BGR2Lab

示例

import cv2 as cv
import matplotlib.pyplot as plt# 读取彩色图像
image = cv.imread('../images/iu.jpg')# BGR 转 RGB
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)# BGR 转 灰度
image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)# BGR 转 HSV
image_hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)# BGR 转 Lab
image_lab = cv.cvtColor(image, cv.COLOR_BGR2Lab)# 显示原始图像和转换后的图像
plt.figure(figsize=(12, 8))# 显示原始图像(BGR 转 RGB)
plt.subplot(2, 2, 1)
plt.imshow(image_rgb)
plt.title('Original Image (RGB)')
plt.axis('off')# 显示灰度图像
plt.subplot(2, 2, 2)
plt.imshow(image_gray, cmap='gray')
plt.title('Grayscale Image')
plt.axis('off')# 显示 HSV 图像
plt.subplot(2, 2, 3)
plt.imshow(image_hsv)
plt.title('HSV Image')
plt.axis('off')# 显示 Lab 图像
plt.subplot(2, 2, 4)
plt.imshow(image_lab)
plt.title('Lab Image')
plt.axis('off')plt.tight_layout()
plt.show()

在这里插入图片描述

详细解释

读取图像

使用 cv.imread 读取图像,默认情况下图像是以 BGR 顺序存储的。
色彩空间转换:

  • 使用 cv.cvtColor 函数进行色彩空间转换。
    • cv.COLOR_BGR2RGB:将 BGR 转换为 RGB。
    • cv.COLOR_BGR2GRAY:将 BGR 转换为灰度。
    • cv.COLOR_BGR2HSV:将 BGR 转换为 HSV。
    • cv.COLOR_BGR2Lab:将 BGR 转换为 Lab。

显示图像

使用 plt.imshow 显示图像。对于彩色图像,确保颜色通道顺序正确(RGB)

  • 对于灰度图像,使用 cmap='gray' 参数显示灰度图像。
  • 对于 HSVLab 图像,先转换回 RGB 格式再显示。

为什么需要将 HSV 和 Lab 图像,先转换回 RGB 格式再显示?

在使用 matplotlib 显示图像时,特别是对于 HSV 和 Lab 色彩空间的图像,先转换回 RGB 格式再显示的原因主要有以下几点:

1. matplotlib 期望的颜色格式是 RGB

matplotlibplt.imshow 函数默认期望输入的图像是 RGB 格式的。如果直接传入 HSV 或 Lab 格式的图像,颜色会显示不正确,因为 matplotlib 会将这些值误解为 RGB 值。

2. 可视化的直观性

HSV 和 Lab 色彩空间的值并不直接对应于人类视觉系统中的颜色感知。例如,HSV 色彩空间中的 H(色调)分量是一个角度值,S(饱和度)和 V(亮度)分量是比例值,而这些值在直接显示时并不能直观地反映出图像的颜色信息。将它们转换回 RGB 格式后,可以更直观地展示图像的颜色信息。

3. 避免误解

直接显示 HSV 或 Lab 图像可能会导致误解,因为这些色彩空间的值范围和含义与 RGB 不同。例如,HSV 色彩空间中的 H 分量范围是 [0, 179](在 OpenCV 中),而 RGB 的每个通道范围是 [0, 255]。直接显示这些图像会导致颜色失真和误解。

示例

以下是一个示例代码,演示如何将 HSV 和 Lab 图像转换回 RGB 格式再使用 matplotlib 显示:

import cv2 as cv
import matplotlib.pyplot as plt# 读取彩色图像
image = cv.imread('example.jpg')# BGR 转 HSV
image_hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)# BGR 转 Lab
image_lab = cv.cvtColor(image, cv.COLOR_BGR2Lab)# HSV 转 RGB
image_hsv_rgb = cv.cvtColor(image_hsv, cv.COLOR_HSV2RGB)# Lab 转 RGB
image_lab_rgb = cv.cvtColor(image_lab, cv.COLOR_Lab2RGB)# 显示原始图像和转换后的图像
plt.figure(figsize=(12, 8))# 显示原始图像(BGR 转 RGB)
image_rgb = cv.cvtColor(image, cv.COLOR_BGR2RGB)
plt.subplot(2, 2, 1)
plt.imshow(image_rgb)
plt.title('Original Image (RGB)')
plt.axis('off')# 显示 HSV 图像(转换回 RGB)
plt.subplot(2, 2, 2)
plt.imshow(image_hsv_rgb)
plt.title('HSV Image (Converted to RGB)')
plt.axis('off')# 显示 Lab 图像(转换回 RGB)
plt.subplot(2, 2, 3)
plt.imshow(image_lab_rgb)
plt.title('Lab Image (Converted to RGB)')
plt.axis('off')plt.tight_layout()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/35236.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零基础想学编程,选择哪一门语言更好就业?(非常详细)零基础入门到精通,收藏这一篇就够了_c#就业方向

编程语言的用途广泛,它们各自在不同的领域和应用场景中发挥着重要作用。 零基础初学者在选择编程语言时,可以从就业方向入手选择。 【一一帮助安全学习,所有资源获取处一一】 ①网络安全学习路线 ②20份渗透测试电子书 ③安全攻防357页笔记 …

Maven高级理解属性

属性 在这一章节内容中,我们将学习两个内容,分别是 属性版本管理 属性中会继续解决分模块开发项目存在的问题,版本管理主要是认识下当前主流的版本定义方式。 4.1 属性 4.1.1 问题分析 讲解内容之前,我们还是先来分析问题: …

pdf压缩,pdf压缩在线,pdf压缩在线网页版

当我们遇到PDF文件过大,需要压缩其容量大小时,通常是为了更方便地传输、存储或分享这些文件。PDF文件的大小可能因其包含的图像、字体等元素的数量和质量而有所不同。下面,我们将详细介绍压缩PDF容量大小的方法,帮助您轻松实现文件…

Vite打包速度为什么比webpack快,打包的优劣势在哪里?

大家都有被webpack打包速度搞崩溃的时候,修改一处地方,想预览效果,要等上半天。 Vite比Webpack快的原因 ESM(ES Module)原生支持: Vite基于ESM构建,利用浏览器原生支持的ESM模块加载方式&…

基于 JuiceFS 构建高校 AI 存储方案:高并发、系统稳定、运维简单

中山大学的 iSEE 实验室(Intelligence Science and System) Lab)在进行深度学习任务时,需要处理大量小文件读取。在高并发读写场景下,原先使用的 NFS 性能较低,常在高峰期导致数据节点卡死。此外,NFS 系统的…

【PL理论深化】(7) Ocaml 语言:静态类型语言 | 自动类型推断 | 多态类型和多态函数 | let-多态类型系统

💬 写在前面:OCaml 是一种拥有静态类型系统的语言,本章我们就要探讨静态类型系统。 目录 0x00 静态类型系统 0x01 自动类型推断(automatic type inference) 0x02 多态类型和多态函数 0x03 let-多态类型系统&#…

暴雨虐长沙,生灵受煎熬

今天,“湖南长沙市遭遇强降雨,一小时的降雨量足够注满54个西湖”这消息,终于登上互联网社交平台热搜榜。 截图:来源社交网站 综合多家媒体消息概述如下。 昨(24日)天,湖南长沙市遭遇强降雨,一…

AI赋能影视解说:Rap说唱玩法拆解!

在影视解说的领域,竞争一直非常激烈,众多创作者纷纷涌入这个热门的赛道。为了在众多声音中脱颖而出,创新成为了关键。最近,一种结合AI技术的解说方式——Rap说唱解说,以其新颖的形式和高效的创作过程,赢得了…

kingbase R3修改pcp_watchdog密码

需要修改的文件 kingbasecluster/etc/HAmodule.conf kingbasecluster/etc/pcp.conf db/etc/HAmodule.conf 3个文件 两个节点都要改。 1.pcp.conf文件 cd kingbasecluster/bin ./sys_md5 12345678ab! 将结果复制拷贝到…/etc/pcp.conf中 放到kingbase:后面 也就是把kingbase 的密…

Java面试八股之JVM内存溢出的原因及解决方案

JVM内存溢出的原因及解决方案 JVM内存溢出(Out Of Memory,OOM)通常是由于程序运行过程中内存使用不当造成的,常见原因及相应的解决方案如下: 原因及解决方案 内存中加载的数据量过大 原因:一次性从数据…

展厅设计中需要人性化的地方

1、预留参观空间 展厅空间的布局设计必须尽可能的宽敞,以避免参观人数较多时可能会发生的拥堵,重点展品需要预留较大的展示空间或四面通畅的中心位置,更方便观众从不同角度与方位参观。因为是展厅,不仅代表着企业形象,…

SolidWorks北京正版代理商亿达四方:官方授权SolidWorks中国代理

在北京这座融合了古老文明与现代科技的都市中,亿达四方作为SolidWorks官方认证的北京区域正版代理商,正引领着一场设计与制造领域的革新风潮。我们致力于为北京及周边地区的企业提供原汁原味的SolidWorks软件及全方位的增值服务,共同推进首都…

智慧校园-毕业管理系统总体概述

在当今教育信息化的浪潮中,智慧校园毕业管理系统脱颖而出,它作为一项综合性的数字平台,全面覆盖了从毕业资格审查到学位授予的每一个关键步骤,旨在通过智能化手段,为高校的毕业管理工作带来革命性的变革。毕业管理系统…

针对VMWare无法使用鼠标功能键问题

在使用 VMWare 虚拟机的Ubuntu系统时发现无法使用许多鼠标带有额外的功能键,比如常用的前进后退,但是双系统中的Ubuntu没有问题,后来一搜发现是,虚拟系统中不支持这些功能键。因此我们对这个问题进行了解决。 解决方案 1.找到自…

【技术解码】百数SRM:如何助力企业快速优化供应链管理?

SRM应用是企业优化供应链管理的重要工具,它帮助企业全面管理供应商关系,从评估、选择到协同合作和绩效监控,确保供应链的稳定性和效率。 对于企业来说,通过全面管理供应商关系,可以降低采购风险,提升产品质…

深度学习windows环境配置

1 下载CUDA和cudnn 详见文章 CUDA与CUDNN在Windows下的安装与配置(超级详细版)_windows cudnn安装-CSDN博客 我电脑的CUDA下载链接如下 ​​​​​https://developer.nvidia.com/cuda-12-1-0-download-archive?target_osWindows&target_archx86…

NAS安全存储怎样实现更精细的数据权限管控?

NAS存储,即网络附属存储(Network Attached Storage),是一种专用数据存储服务器,其核心特点在于将数据存储设备与网络相连,实现集中管理数据的功能。 NAS存储具有以下明显优势,而被全球范围内的企…

关于等保测评你了解多少?

在当今数字化时代,网络安全问题愈发凸显其重要性。作为保障信息系统安全的关键环节,等保测评(网络安全等级保护测评)成为了企业和组织不可或缺的一部分。那么,关于等保测评,我们究竟了解多少呢?…

基于SSM的医药垃圾分类管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM的医药垃圾分类管理系统,java项目…

【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究

系列文章目录 【扩散模型(一)】中介绍了 Stable Diffusion 可以被理解为重建分支(reconstruction branch)和条件分支(condition branch)本文将从该视角快速理解 IP-Adapter 以及相关可控生成研究。 文章目…