算法设计与分析:并查集法求图论桥问题

目录

一、实验目的

二、问题描述

三、实验要求

四、算法思想

1.  基准算法

1.1 算法思想

1.2 代码

1.3 时间复杂度

2. 使用并查集的高效算法

2.1 算法思想

2.2 代码:

2.3 时间复杂度:

五、实验结果


实验目的

1. 掌握图的连通性。

2. 掌握并查集的基本原理和应用。

问题描述

在图论中,一条边被称为“桥”代表这条边一旦被删除,这个图的连通块数量会增加。等价地说,一条边是一座桥当且仅当这条边不在任何环上,一个图可以有零或多座桥。现要找出一个无向图中所有的桥,基准算法为:对于图中每条边uv,删除该边后,运用BFS或DFS确定u和v是否仍然连通,若不连通,则uv是桥。应用并查集设计一个比基准算法更高效的算法,不要使用Tarjan算法。        

                                    

            图1 没有桥的无向连通图                   图2 有16个顶点和6个桥的图(桥以红色线段标示)

实验要求

1. 实现上述基准算法。

2. 设计的高效算法中必须使用并查集,如有需要,可以配合使用其他任何数据结构。

3. 用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

4. 使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

5. 实验课检查内容:对于smallG.txt、mediumG.txt、largeG.txt中的无向图,测试高效算法的输出结果和运行时间,检查该代码,限用C或C++语言编写。其中smallG.txt和mediumG.txt为必做内容,运行时间在4分钟内有效,直接在终端输出结果和运行时间。以smallG.txt为例,输出如下:

6

0 1

2 3

2 6

6 7

9 10

12 13

0.002

其中,第一行的6表示桥数,接下来的6行分别是6座桥的两个端点,小端点在前,大端点在后,6座桥按照端点从小到大的顺序输出,最后一行的0.002为整个main函数的运行时间,单位为秒。

、算法思想

1.  基准算法

1.1 算法思想

        1)先dfs遍历图,得到连通分量个数N;

        2)遍历边集,对于每条边ei,先删除ei;

        3)再次dfs得到此时的连通分量个数num,

        4)如果num!=N,则ei为桥;否则不为桥。

        5)恢复ei,取下一条边ei+1,回到2)继续,直到遍历完全部边。

1.2 代码
int **k,*v,n,m,**br,brnum,N;
//邻接矩阵、访问位、点数、边数、是否为桥、桥数、
int *p,*d,*qiao;//并查集、点的深度、标记dfs2后是否为桥
string filename;//文件名void read1(){//初始化int i,a,b;ifstream file(filename.c_str());file>>n>>m;k=new int*[n];v=new int[n];br=new int*[n];brnum=0;for(i=0;i<n;i++){k[i]=new int[n];br[i]=new int[2];v[i]=0;br[i][0]=br[i][1]=0;for(int j=0;j<n;j++)k[i][j]=0;}for(i=0;i<m;i++){file>>a>>b;k[a][b]=1;k[b][a]=1;}file.close();
}void dfs1(int a){//dfs深度遍历int i;v[a]=1;for(i=0;i<n;i++)if(k[a][i]&&!v[i])dfs1(i);
}int count1(){//计算连通分量个数int i,num=0;for(i=0;i<n;i++)if(!v[i]){dfs1(i);num++;}return num;
}void base(){//基准法int i,j,a,b,num;ifstream file(filename.c_str());file>>n>>m;N=count1();for(i=0;i<m;i++){file>>a>>b;k[a][b]=0;//先删除该边k[b][a]=0;for(j=0;j<n;j++)v[j]=0;num=count1();if(num!=N){//判断是否为桥br[brnum][0]=a;//记录桥br[brnum][1]=b;brnum++;//桥个数增加}k[a][b]=1;//恢复该边k[b][a]=1;}file.close();
}void print1(){//因为实验对输出格式有要求int i,j,a,b;cout<<brnum<<endl;for(i=0;i<brnum-1;i++){//选择排序a=i;for(j=i+1;j<brnum;j++){if(br[j][0]<br[a][0]||(br[j][0]==br[a][0]&&br[j][1]<br[a][1]))//父端较小 或 父端相同、子端较小a=j;}b=br[a][0];br[a][0]=br[i][0];br[i][0]=b;b=br[a][1];br[a][1]=br[i][1];br[i][1]=b;}for(int i=0;i<brnum;i++){cout<<br[i][0]<<" "<<br[i][1]<<endl;}
}
1.3 时间复杂度

        n个点,m条边。需要遍历m条边,O(m),每次都需要count1一次,而count1由于是使用邻接矩阵储存边关系,最坏情况为O(n^2)。所以总的时间复杂度为O(m*n^2)。

        如果用邻接表,则count1的时间复杂度为O(n+m),总时间复杂度变为O(m(n+m))。

2. 使用并查集的高效算法

2.1 算法思想

        桥的等价意义:不在环上的边

        树是边数最小的无环图,当向树上添加任意一条顶点都在树上的边时,会形成环。桥不在环上,所以桥只能在图的生成树上。

        所以还是先构建生成树,然后不断dfs,不过dfs过程中顺便记录每个点的深度d[i]。

        再遍历所有边,每次遍历时:

                如果为生成树上的边则直接return。

                否则:求当前边两端点的最近公共祖先(LCA),过程中将路过的边(在环上)置为非桥边(q[i]==0);并根据LCA进行路径压缩compress(将环上除了LCA本身的点的父节点均设置为LCA)。

        这里以点带边,即q[i]==1表示以第i个点为尾的生成树上的边为桥,该边用(p[i],i)表示(p[i]为i在生成树上的父节点)。

2.2 代码:
void read2(){//读入文件信息并初始化…………
}void dfs2(int a,int b,int depth){//b is the ancestor of a…………
}void count2(){//生成生成树、并查集、深度集合等…………
}void compress(int x,int a){//路径压缩if(p[x]==a)//等于最近公共祖先return;else{int t=x;x=p[x];p[t]=a;compress(x,a);}
}void LCA(int a,int b){//对每条边的两点找最近公共祖先if(p[a]==b||p[b]==a)//在生成树上的边,直接返回return;else{int u=a,v=b,//保留原边的两端x=0,y=0;//判断a、b是否在while中执行了a=p[a]、b=p[b]操作,有执行才压缩,//避免其中一点是最近公共祖先时压缩导致该点父节点被自己覆盖while(1){if(d[a]>d[b]){//深度大的向上遍历qiao[a]=0;a=p[a];x=1;}else if(d[a]<d[b]){//深度大的向上遍历qiao[b]=0;b=p[b];y=1;}else if(a!=b){//深度相同但不同点,一起向上遍历qiao[a]=0;qiao[b]=0;a=p[a];b=p[b];x=y=1;}else break;//同个点,a=b=最近公共祖先}//此时a==bif(x)//路径压缩compress(u,a);if(y)compress(v,b);}
}
void better(){//并查集的高效算法int i,a,b;ifstream file(filename.c_str());//读入文件count2();//生成生成树、并查集、深度集合等file>>n>>m;for(i=0;i<m;i++){//遍历每一条边file>>a>>b;LCA(a,b);//求最近公共祖先}file.close();
}
void print2(){//打印输出……
}

     虽然压缩后不能再直接使用”if(p[a]==b||p[b]==a)“判断边(a,b)是否为原生成树上的边,但不影响结果。因为压缩的边都是非桥边,只不过会执行下面的while。但总体上压缩后效率还是提高了的。

2.3 时间复杂度:

        n个点,m条边。dfs构建生成树最坏情况下时间复杂度为O(n^2)。遍历m条边,每次查找最近公共祖先最差情况下要查找n次,时间复杂度为O(n),一次路径压缩最差情况时间复杂度也为O(n)。所以总时间复杂度为O(n*(m+n))。

实验结果

1、用图2的例子验证算法的正确性,该图存储在smallG.txt中,文件中第1行是顶点数,第2行是边数,后面是每条边的两个端点。

                                                  

        验证正确。

2、使用文件mediumG.txt和largeG.txt中的无向图测试基准算法和高效算法的性能,记录两个算法的运行时间。

        mediumG.txt:

       对于largeG.txt文件,由于使用的是邻接矩阵,n太大,运行时内存不够分配,运行中断。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34285.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

卷积的通俗解释

以时间和空间两个维度分别理解卷积&#xff0c;先用文字来描述&#xff1a; 时间上&#xff0c;任何当前信号状态都是迄至当前所有信号状态的叠加&#xff1b;时间上&#xff0c;任何当前记忆状态都是迄至当前所有记忆状态的叠加&#xff1b;空间上&#xff0c;任何位置状态都…

python怎样自动提示

第一步、打开pycharm&#xff0c;如下图所示&#xff1a; 第二步、File→Power Save Mode&#xff0c;把下面如图所示的勾去掉&#xff1a; 第三步、去掉勾后&#xff0c;不再使用省电模式&#xff0c;新建一个python文件。输入单词前两个字母&#xff0c;就会自动提示了&#…

为什么说大模型训练很难?

前言 在人工智能的浪潮中&#xff0c;大模型训练无疑是一股不可忽视的力量。然而&#xff0c;这背后的过程却充满了挑战与困难。今天&#xff0c;让我们一同揭开大模型训练的神秘面纱&#xff0c;探讨为何它值得您的关注与投入。 大模型训练的挑战 大模型训练之所以难&…

选择门店收银系统要考虑哪些方面?美业系统Java源码分享私

开店前的一个重要事件就是选择门店收银软件/系统&#xff0c;尤其是针对美容、医美等美业门店&#xff0c;一个优秀专业的系统十分重要&#xff0c;它必须贴合门店的经营需求&#xff0c;提供更全面、便捷、高效的管理功能&#xff0c;帮助提升门店的服务质量和经营效益。 以下…

Python笔记 文件的读取操作

1.open()打开函数 再Python&#xff0c;使用open函数&#xff0c;可以打开一个已经存在的文件&#xff0c;或者创建一个新文件&#xff0c;语法如下 open(name,mode,encoding) name:是要打开的文件名的字符串&#xff08;可以包含文件所在的具体路径&#xff09; mode&…

【几何】多少正方形?

题目枚举边长为1边长为 2 \sqrt{2} 2 ​边长为 5 \sqrt{5} 5 ​边长为 8 \sqrt{8} 8 ​边长为 13 \sqrt{13} 13 ​ 扩展-使用代码来数1、定义点对象2、定义正方形对象3、初始化所有点4、调用完整代码 题目 多少正方形&#xff1f; 枚举 设每个横纵相邻点得间距为1&#xff0…

线程池概念、线程池的不同创建方式、线程池的拒绝策略

文章目录 &#x1f490;线程池概念以及什么是工厂模式&#x1f490;标准库中的线程池&#x1f490;什么是工厂模式&#xff1f;&#x1f490;ThreadPoolExecutor&#x1f490;模拟实现线程池 &#x1f490;线程池概念以及什么是工厂模式 线程的诞生是因为&#xff0c;频繁的创…

3D Web轻量化引擎HOOPS Commuicator是如何创建AEC查看器的?

在当今数字化时代&#xff0c;建筑、工程和施工&#xff08;AEC&#xff09;行业正经历着一场技术革命。HOOPS Communicator&#xff0c;一款基于HOOPS Web平台的3D Web轻量化引擎&#xff0c;正是这场革命的先锋之一。本文将探讨HOOPS Communicator是如何创建AEC查看器的&…

【CentOS 7】深入指南:使用LVM和扩展文件系统增加root分区存储容量

【CentOS 7】深入指南&#xff1a;使用LVM和扩展文件系统增加root分区存储容量 大家好 我是寸铁&#x1f44a; 【CentOS 7】深入指南&#xff1a;使用LVM和扩展文件系统增加root分区存储容量 ✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 在运行CentOS 7服务器或虚拟机时&a…

【扫雷游戏】C语言详解

Hi~&#xff01;这里是奋斗的小羊&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f4a5;&#x1f4a5;个人主页&#xff1a;奋斗的小羊 &#x1f4a5;&#x1f4a5;所属专栏&#xff1a;C语言 &#x1f680;本系列文章为个人学习…

lvs集群 Keepalived

Keepalived高可用集群 Keepalived概述 功能 LVS规则管理LVS集群真实服务器状态监测管理VIP Keepalived实现web高可用 安装keepalived软件 在webservers上配置 启动服务 webservers systemctl start keepalived.service ip a s | grep 192.168 #web1主机绑定vip 测试…

Windows资源管理器down了,怎么解

ctrlshiftesc 打开任务管理器 文件 运行新任务 输入 Explorer.exe 资源管理器重启 问题解决 桌面也回来了

MoonBit 周报 Vol.46:支持32位无符号整数!

MoonBit 更新 支持了 32 位无符号整数 let num 100U // 32位无符号整数的字面量需要后缀U在 wasm 后端导出返回值类型为 Unit 的函数时&#xff0c;之前导出函数的类型中会有 (result i32)&#xff0c;现在 MoonBit 编译器会自动生成一个没有返回值 wrapper 函数&#xff0c…

爬虫day3

爬虫如何提高效率&#xff1f; 我们可以选择多线程&#xff0c;多进程&#xff0c;协程等操作完成异步爬取。 异步&#xff1a;把一个变成多个 线程&#xff1a;执行单位 进程&#xff1a;资源单位&#xff0c;每一个进程至少有一个线程 if __name__ __main__: print(&qu…

都说HCIE“烂大街”了,说难考都是假的?

在网络技术领域&#xff0c;华为认证互联网专家&#xff08;HCIE&#xff09;长期以来被视为一项高端认证&#xff0c;代表着专业技能和知识水平。 然而&#xff0c;近几年来&#xff0c;考证的重视度直线上升&#xff0c;考HCIE的人越来越多了&#xff0c;考过的人好像也越来越…

C++ | Leetcode C++题解之第162题寻找峰值

题目&#xff1a; 题解&#xff1a; class Solution { public:int findPeakElement(vector<int>& nums) {int n nums.size();// 辅助函数&#xff0c;输入下标 i&#xff0c;返回一个二元组 (0/1, nums[i])// 方便处理 nums[-1] 以及 nums[n] 的边界情况auto get …

android adb常用命令集

1、系统调试 #adb shell&#xff1a;进入设备的 shell 命令行界面&#xff0c;可以在此执行各种 Linux 命令和特定的 Android 命令。 #adb shell dumpsys&#xff1a;提供关于系统服务和其状态的详细信息。 #adb logcat&#xff1a;实时查看设备的日志信息。可以使用过滤条件来…

震惊!这样制作宣传册,效果竟然如此惊人!

在当今社会&#xff0c;宣传册作为一种重要的宣传手段&#xff0c;其制作质量直接影响到宣传效果。而令人震惊的是&#xff0c;现在有些制作宣传册的方法&#xff0c;其效果竟然如此惊人&#xff01;今天&#xff0c;教大家如何制作宣传册吧&#xff01; 首先&#xff0c;我们要…

群晖NAS部署VoceChat私人聊天系统并一键发布公网分享好友访问

文章目录 前言1. 拉取Vocechat2. 运行Vocechat3. 本地局域网访问4. 群晖安装Cpolar5. 配置公网地址6. 公网访问小结 7. 固定公网地址 前言 本文主要介绍如何在本地群晖NAS搭建一个自己的聊天服务Vocechat&#xff0c;并结合内网穿透工具实现使用任意浏览器远程访问进行智能聊天…

数据挖掘常见算法(关联)

Apriori算法 Apriori算法基于频繁项集性质的先验知识&#xff0c;使用由下至上逐层搜索的迭代方法&#xff0c;即从频繁1项集开始&#xff0c;采用频繁k项集搜索频繁k1项集&#xff0c;直到不能找到包含更多项的频繁项集为止。 Apriori算法由以下步骤组成&#xff0c;其中的核…