Codeforces Round 954 (Div. 3) A B C D

A. X Axis

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given three points with integer coordinates x 1 x_1 x1, x 2 x_2 x2, and x 3 x_3 x3 on the X X X axis ( 1 ≤ x i ≤ 10 1 \leq x_i \leq 10 1xi10). You can choose any point with an integer coordinate a a a on the X X X axis. Note that the point a a a may coincide with x 1 x_1 x1, x 2 x_2 x2, or x 3 x_3 x3. Let f ( a ) f(a) f(a) be the total distance from the given points to the point a a a. Find the smallest value of f ( a ) f(a) f(a).

The distance between points a a a and b b b is equal to ∣ a − b ∣ |a - b| ab. For example, the distance between points a = 5 a = 5 a=5 and b = 2 b = 2 b=2 is 3 3 3.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 3 1 \leq t \leq 10^3 1t103) — the number of test cases. Then follows their descriptions.

The single line of each test case contains three integers x 1 x_1 x1, x 2 x_2 x2, and x 3 x_3 x3 ( 1 ≤ x i ≤ 10 1 \leq x_i \leq 10 1xi10) — the coordinates of the points.

Output

For each test case, output the smallest value of f ( a ) f(a) f(a).

Example

i n p u t \tt input input
8
1 1 1
1 5 9
8 2 8
10 9 3
2 1 1
2 4 1
7 3 5
1 9 4
o u t p u t \tt output output
0
8
6
7
1
3
4
8

Note

In the first test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 1 a = 1 a=1: f ( 1 ) = ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ = 0 f(1) = |1 - 1| + |1 - 1| + |1 - 1| = 0 f(1)=∣11∣+∣11∣+∣11∣=0.

In the second test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 5 a = 5 a=5: f ( 5 ) = ∣ 1 − 5 ∣ + ∣ 5 − 5 ∣ + ∣ 9 − 5 ∣ = 8 f(5) = |1 - 5| + |5 - 5| + |9 - 5| = 8 f(5)=∣15∣+∣55∣+∣95∣=8.

In the third test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 8 a = 8 a=8: f ( 8 ) = ∣ 8 − 8 ∣ + ∣ 2 − 8 ∣ + ∣ 8 − 8 ∣ = 6 f(8) = |8 - 8| + |2 - 8| + |8 - 8| = 6 f(8)=∣88∣+∣28∣+∣88∣=6.

In the fourth test case, the smallest value of f ( a ) f(a) f(a) is achieved when a = 9 a = 9 a=9: f ( 10 ) = ∣ 10 − 9 ∣ + ∣ 9 − 9 ∣ + ∣ 3 − 9 ∣ = 7 f(10) = |10 - 9| + |9 - 9| + |3 - 9| = 7 f(10)=∣109∣+∣99∣+∣39∣=7.

Tutorial

易得只要找到的点在其最大值和最小值中间即可

此解法时间复杂度为 O ( n ) \mathcal O(n) O(n),即找最大值和最小值的复杂度

Solution

for _ in range(int(input())):a = list(map(int, input().split()))print(max(a) - min(a))

B. Matrix Stabilization

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given a matrix of size n × m n \times m n×m, where the rows are numbered from 1 1 1 to n n n from top to bottom, and the columns are numbered from 1 1 1 to m m m from left to right. The element at the intersection of the i i i-th row and the j j j-th column is denoted by a i j a_{ij} aij.

Consider the algorithm for stabilizing matrix a a a:

  1. Find the cell ( i , j ) (i, j) (i,j) such that its value is strictly greater than the values of all its neighboring cells. If there is no such cell, terminate the algorithm. If there are multiple such cells, choose the cell with the smallest value of i i i, and if there are still multiple cells, choose the one with the smallest value of j j j.
  2. Set a i j = a i j − 1 a_{ij} = a_{ij} - 1 aij=aij1.
  3. Go to step 1 1 1.

In this problem, cells ( a , b ) (a, b) (a,b) and ( c , d ) (c, d) (c,d) are considered neighbors if they share a common side, i.e., ∣ a − c ∣ + ∣ b − d ∣ = 1 |a - c| + |b - d| = 1 ac+bd=1.

Your task is to output the matrix a a a after the stabilization algorithm has been executed. It can be shown that this algorithm cannot run for an infinite number of iterations.

Input

Each test consists of multiple sets of input data. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of sets of input data. This is followed by their description.

The first line of each set of input data contains two integers n n n and m m m ( 1 ≤ n , m ≤ 100 , n ⋅ m > 1 1 \leq n, m \leq 100, n \cdot m > 1 1n,m100,nm>1) — the number of rows and columns of matrix a a a.

The next n n n lines describe the corresponding rows of the matrix. The i i i-th line contains m m m integers a i 1 , a i 2 , … , a i m a_{i1}, a_{i2}, \ldots, a_{im} ai1,ai2,,aim ( 1 ≤ a i j ≤ 1 0 9 1 \leq a_{ij} \leq 10^9 1aij109).

It is guaranteed that the sum of n ⋅ m n \cdot m nm over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each set of input data, output n n n lines with m m m numbers in each line — the values of the cells of matrix a a a after the stabilization algorithm.

Example

i n p u t \tt input input
6
1 2
3 1
2 1
1
1
2 2
1 2
3 4
2 3
7 4 5
1 8 10
5 4
92 74 31 74
74 92 17 7
31 17 92 3
74 7 3 92
7 31 1 1
3 3
1000000000 1 1000000000
1 1000000000 1
1000000000 1 1000000000
o u t p u t \tt output output
1 1
1
1
1 2
3 3
4 4 5
1 8 8
74 74 31 31
74 74 17 7
31 17 17 3
31 7 3 3
7 7 1 1
1 1 1
1 1 1
1 1 1

Note

In the first set of input data, the algorithm will select the cell ( 1 , 1 ) (1, 1) (1,1) twice in a row and then terminate.

In the second set of input data, there is no cell whose value is strictly greater than the values of all neighboring cells.

In the third set of input data, the algorithm will select the cell ( 2 , 2 ) (2, 2) (2,2) and then terminate.

In the fourth set of input data, the algorithm will select the cell ( 1 , 1 ) (1, 1) (1,1) three times and then the cell ( 2 , 3 ) (2, 3) (2,3) twice.

Tutorial

可以一次一次遍历所有元素,根据规则,如果有元素被更改,则进行下一次遍历,如果遍历一次根据都没有更改元素,那么说明矩阵都不能再改变了,即得到答案

此解法时间复杂度为 O ( n m ) \mathcal O(nm) O(nm)

Solution

dx = [0, 0, 1, -1]
dy = [1, -1, 0, 0]def ok(x, y, n, m):return 0 <= x < n and 0 <= y < mfor _ in range(int(input())):n, m = map(int, input().split())g = [list(map(int, input().split())) for _ in range(n)]for i in range(n):for j in range(m):mx = 0for k in range(4):x, y = i + dx[k], j + dy[k]if ok(x, y, n, m):mx = max(mx, g[x][y])g[i][j] = min(g[i][j], mx)for gi in g:print(*gi)

C. Update Queries

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

Let’s consider the following simple problem. You are given a string s s s of length n n n, consisting of lowercase Latin letters, as well as an array of indices i n d ind ind of length m m m ( 1 ≤ i n d i ≤ n 1 \leq ind_i \leq n 1indin) and a string c c c of length m m m, consisting of lowercase Latin letters. Then, in order, you perform the update operations, namely, during the i i i-th operation, you set s i n d i = c i s_{ind_i} = c_i sindi=ci. Note that you perform all m m m operations from the first to the last.

Of course, if you change the order of indices in the array i n d ind ind and/or the order of letters in the string c c c, you can get different results. Find the lexicographically smallest string s s s that can be obtained after m m m update operations, if you can rearrange the indices in the array i n d ind ind and the letters in the string c c c as you like.

A string a a a is lexicographically less than a string b b b if and only if one of the following conditions is met:

  • a a a is a prefix of b b b, but a ≠ b a \neq b a=b;
  • in the first position where a a a and b b b differ, the symbol in string a a a is earlier in the alphabet than the corresponding symbol in string b b b.

Input

Each test consists of several sets of input data. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of sets of input data. Then follows their description.

The first line of each set of input data contains two integers n n n and m m m ( 1 ≤ n , m ≤ 1 0 5 1 \leq n, m \leq 10^5 1n,m105) — the length of the string s s s and the number of updates.

The second line of each set of input data contains a string s s s of length n n n, consisting of lowercase Latin letters.

The third line of each set of input data contains m m m integers i n d 1 , i n d 2 , … , i n d m ind_1, ind_2, \ldots, ind_m ind1,ind2,,indm ( 1 ≤ i n d i ≤ n 1 \leq ind_i \leq n 1indin) — the array of indices i n d ind ind.

The fourth line of each set of input data contains a string c c c of length m m m, consisting of lowercase Latin letters.

It is guaranteed that the sum of n n n over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105. Similarly, the sum of m m m over all sets of input data does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each set of input data, output the lexicographically smallest string s s s that can be obtained by rearranging the indices in the array i n d ind ind and the letters in the string c c c as you like.

Example

i n p u t \tt input input
4
1 2
a
1 1
cb
4 4
meow
1 2 1 4
zcwz
7 4
abacaba
1 3 5 7
damn
7 10
traktor
7 6 5 4 3 2 1 6 4 2
codeforces
o u t p u t \tt output output
b
cwoz
abdcmbn
ccdeefo

Note

In the first set of input data, you can leave the array i n d ind ind and the string c c c unchanged and simply perform all operations in that order.

In the second set of input data, you can set the array i n d = [ 1 , 1 , 4 , 2 ] ind = [1, 1, 4, 2] ind=[1,1,4,2] and c = c = c= “zczw”. Then the string s s s will change as follows: m e o w → z e o w → c e o w → c e o z → c w o z meow \rightarrow zeow \rightarrow ceow \rightarrow ceoz \rightarrow cwoz meowzeowceowceozcwoz.

In the third set of input data, you can leave the array i n d ind ind unchanged and set $c = $ “admn”. Then the string s s s will change as follows: a b a c a b a → a b a c a b a → a b d c a b a → a b d c m b a → a b d c m b n abacaba \rightarrow abacaba \rightarrow abdcaba \rightarrow abdcmba \rightarrow abdcmbn abacabaabacabaabdcabaabdcmbaabdcmbn.

Tutorial

由于只有最后一次修改会改变每个位置的值,所以只需要将每个靠前的位置的元素变为更小的字符即可

所以可以贪心地对所有可以更改的字符排序,将每个修改过的位置贪心选择更小的字符即可

此解法时间复杂度为 O ( n log ⁡ n ) \mathcal O(n \log n) O(nlogn)

Solution

for _ in range(int(input())):n, m = map(int, input().split())s = list(input())a = sorted(set(list(map(int, input().split()))))c = sorted(list(input()))idx = 0for ai in a:s[ai - 1] = c[idx]idx += 1print(''.join(s))

D. Mathematical Problem

time limit per test: 2 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

You are given a string s s s of length n > 1 n \gt 1 n>1, consisting of digits from 0 0 0 to 9 9 9. You must insert exactly n − 2 n - 2 n2 symbols + + + (addition) or × \times × (multiplication) into this string to form a valid arithmetic expression.

In this problem, the symbols cannot be placed before the first or after the last character of the string s s s, and two symbols cannot be written consecutively. Also, note that the order of the digits in the string cannot be changed. Let’s consider s = 987009 s = 987009 s=987009:

  • From this string, the following arithmetic expressions can be obtained: 9 × 8 + 70 × 0 + 9 = 81 9 \times 8 + 70 \times 0 + 9 = 81 9×8+70×0+9=81, 98 × 7 × 0 + 0 × 9 = 0 98 \times 7 \times 0 + 0 \times 9 = 0 98×7×0+0×9=0, 9 + 8 + 7 + 0 + 09 = 9 + 8 + 7 + 0 + 9 = 33 9 + 8 + 7 + 0 + 09 = 9 + 8 + 7 + 0 + 9 = 33 9+8+7+0+09=9+8+7+0+9=33. Note that the number 09 09 09 is considered valid and is simply transformed into 9 9 9.
  • From this string, the following arithmetic expressions cannot be obtained: + 9 × 8 × 70 + 09 +9 \times 8 \times 70 + 09 +9×8×70+09 (symbols should only be placed between digits), 98 × 70 + 0 + 9 98 \times 70 + 0 + 9 98×70+0+9 (since there are 6 6 6 digits, there must be exactly 4 4 4 symbols).

The result of the arithmetic expression is calculated according to the rules of mathematics — first all multiplication operations are performed, then addition. You need to find the minimum result that can be obtained by inserting exactly n − 2 n - 2 n2 addition or multiplication symbols into the given string s s s.

Input

Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \leq t \leq 10^4 1t104) — the number of test cases. Then follows their description.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 20 2 \leq n \leq 20 2n20) — the length of the string s s s.

The second line of each test case contains a string s s s of length n n n, consisting of digits from 0 0 0 to 9 9 9.

Output

For each test case, output the minimum result of the arithmetic expression that can be obtained by inserting exactly n − 2 n - 2 n2 addition or multiplication symbols into the given string.

Example

i n p u t \tt input input
18
2
10
2
74
2
00
2
01
3
901
3
101
5
23311
6
987009
7
1111111
20
99999999999999999999
20
00000000000000000000
4
0212
18
057235283621345395
4
1112
20
19811678487321784121
4
1121
4
2221
3
011
o u t p u t \tt output output
10
74
0
1
9
1
19
0
11
261
0
0
0
12
93
12
24
0

Note

In the first four test cases, we cannot add symbols, so the answer will be the original number.

In the fifth test case, the optimal answer looks as follows: 9 × 01 = 9 × 1 = 9 9 \times 01 = 9 \times 1 = 9 9×01=9×1=9.

In the sixth test case, the optimal answer looks as follows: 1 × 01 = 1 × 1 = 1 1 \times 01 = 1 \times 1 = 1 1×01=1×1=1.

In the seventh test case, the optimal answer looks as follows: 2 + 3 + 3 + 11 = 19 2 + 3 + 3 + 11 = 19 2+3+3+11=19.

In the eighth test case, one of the optimal answers looks as follows: 98 × 7 × 0 + 0 × 9 = 0 98 \times 7 \times 0 + 0 \times 9 = 0 98×7×0+0×9=0.

Tutorial

由于需要刚好插入 n − 2 n - 2 n2 个符号,所以其中被运算的若干数字中,有且仅有一个数字是两位数,其余数字均为个位数,所以可以枚举这个两位数,其余均为一位数

然后对这些数字进行计算,如果其中有 0,那么就可以乘以 0,最终答案即为 0 0 0,如果遇到 1,则直接乘以 1,此时数字不变,如果遇到的数字大于 1,那么直接加上这个数即可(如果乘以这个数那么必定比加上这个数大)

此解法时间复杂度为 O ( n 2 ) \mathcal O(n ^ 2) O(n2)

Solution

def f(a):if a.count(0):return 0cnt = 0for ai in a:if ai > 1:cnt += aireturn max(cnt, 1)for _ in range(int(input())):n = int(input())s = list(input())ans = 270for i in range(n - 1):a = []for j in range(n):if i == j:a.append(int(s[j] + s[j + 1]))elif j != i + 1:a.append(int(s[j]))ans = min(ans, f(a))print(ans)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34034.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis 源码分析-- SQL请求执行流程( Mapper 接口方法的执行的过程)

前言 前面我们从源码层面梳理了 SqlSessionFactory、SqlSession 的创建过程及 Mapper 获取过程&#xff0c;本篇我们继续分析一下 Mapper 接口方法的执行的过程&#xff0c;也就是 SQL 的执行流程。 Mybatis 相关知识传送门 初识 MyBatis 【MyBatis 核心概念】 MyBatis 源码…

Anaconda3 常用命令及配置

1、Anaconda是什么? 2、conda常用命令 系统环境&#xff1a;windows10 Anaconda版本&#xff1a;Anaconda3-2024.02-1-Windows-x86_64 2.1、虚拟环境管理 1、查看虚拟环境 conda env list conda info -e 2、创建虚拟环境 # 创建名为 pyenv 的虚拟环境 conda create --na…

计算机软件著作权申请流程及费用_快速登记_经验分享收藏级教程

最近需要申请计算机软件著作权&#xff0c;申请流程走了一遍&#xff0c;整理了分享给大家。软件著作权申请流程及费用&#xff0c;软著快速登记、软著材料及问题解答FAQ&#xff0c;阿里云百科阿里云计算机软件著作权登记20天下证&#xff0c;那么如何申请阿里云软件著作权登记…

MTK7628+MT7612 加PA定频数据

1、硬件型号TR726A5G121-DPA PC9.02.0017。如下所示&#xff1a; 2、WIFI5.8 AC模式 42&#xff08;5120MHz&#xff09;信道&#xff0c;80带宽 3、WIFI5.8 AC模式 38&#xff08;5190MHz&#xff09;信道&#xff0c;40带宽 4、WIFI5.8 AC模式 36&#xff08;5180 MHz&…

股票分析学习

库&#xff1a; pandas to_datetime:它可以处理各种格式的日期和时间数据&#xff0c;并将其统一转换为 Pandas 可以理解和操作的内部日期时间格式。 matplotlib.pyplot 用户可以轻松地创建各种静态、动态、交互式和 3D 图形。 1. 绘制线图&#xff08;plot()&#xff09; …

FEP耐酸碱耐高温可定制滴瓶60ml透明四氟瓶F46滴加瓶

FEP滴瓶&#xff1a;又叫聚全氟乙丙烯滴瓶&#xff0c;特氟龙滴瓶。广泛应用于痕量分析、超痕量分析、ICP-MS分析、同位素分析等实验。 主要特性如下&#xff1a; 1.耐高低温&#xff1a;使用温度可达-200&#xff5e;205℃&#xff1b; 2.材质为高纯实验级进口TeflonFEP加工…

虚拟机链接不上usb

传输速度慢 记得换一个支持usb3.0的口和支持usb3.0的线

C语言从入门到进阶(15万字总结)

前言&#xff1a; 《C语言从入门到进阶》这本书可是作者呕心沥血之作&#xff0c;建议零售价1元&#xff0c;当然这里开个玩笑。 本篇博客可是作者之前写的所有C语言笔记博客的集结&#xff0c;本篇博客不止有知识点&#xff0c;还有一部分代码练习。 有人可能会问&#xff…

运维技术栈总结

文章目录 Linux CommandBasecd/lschmod/chown/chgrpvi/vimscptarsudf Installrpmyumdeb/apt Filtertailgrepawkfindnetstatechotelnetwhereistouch/mkdirgzip/rar/tar Statistics Linux MonitorCPUtophtopsar Memoryfreevmstat I/Oiostatpidstatiotop Networknetstatiftoptcpdu…

认识Retrieval Augmented Generation(RAG)

什么是RAG&#xff1f; Retrieval-Augmented Generation (RAG) 是一种结合信息检索和生成式AI技术的框架。它通过从外部数据源检索信息&#xff0c;增强语言模型&#xff08;如GPT-3&#xff09;的生成能力&#xff0c;从而提供更加准确和相关的回答。 RAG的组成部分 信息检…

用腾讯云语音合成(TTS)批量生成英语绘本的朗读音频

孩子进行英语启蒙&#xff0c;需要看很多英语绘本&#xff0c;而且要听配套的音频来练听力。但有些英语绘本是没有对应音频的&#xff0c;下面简单几步&#xff0c;就可以将任意英语绘本制作出对应的英语朗读音频。 先到电子书资源网站搜索这个绘本名称&#xff0c;如果有电子…

三.iOS核心动画 - 关于图层几何(frame,bounds,transform,position)

引言 关于UIView的布局有一个经常被问到的问题&#xff0c;frame和bounds有什么区别&#xff0c;同样CALayer也有frame和bounds这两个属性&#xff0c;还有一个与UIView的center对应的position属性&#xff0c;本篇博客我们就来详细的探讨一下图层中的frame和bounds到底有什么…

Python酷库之旅-第三方库openpyxl(07)

目录 一、 openpyxl库的由来 1、背景 2、起源 3、发展 4、特点 4-1、支持.xlsx格式 4-2、读写Excel文件 4-3、操作单元格 4-4、创建和修改工作表 4-5、样式设置 4-6、图表和公式 4-7、支持数字和日期格式 二、openpyxl库的优缺点 1、优点 1-1、支持现代Excel格式…

十大经典排序算法——选择排序和冒泡排序

一、选择排序 1.基本思想 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据全部排完。 2.直接选择排序 (1) 在元素集合arr[i] — arr[n - 1]中选择关键妈的最大&#xff08;小…

高考十字路口:24年考生如何权衡专业与学校的抉择?

文章目录 每日一句正能量前言专业解析理工科专业商科专业人文社科专业艺术与设计专业个人经验与思考过程结论 名校效应分析名校声誉与品牌效应资源获取学术氛围就业优势个人发展结论 好专业和好学校的权衡个人职业目标行业需求教育质量资源和机会学术氛围就业优势经济和地理位置…

嵌入式学习——数据结构(单向无头链表)——day46

1. 数据结构 1.1 定义 数据结构是指计算机中数据的组织、管理和存储方式。它不仅包括数据元素的存储方式&#xff0c;还包括数据元素之间的关系&#xff0c;以及对数据进行操作的方法和算法。数据结构的选择和设计直接影响算法的效率和程序的性能&#xff0c;是计算机科学与编…

说一说三大运营商的流量类型,看完就知道该怎么选运营商了!

说一说三大运营商的流量类型&#xff0c;看完就知道该怎么选运营商了&#xff1f;目前三大运营商的流量类型大致分为通用流量和定向流量&#xff0c;比如&#xff1a; 中国电信&#xff1a;通用流量定向流量 电信推出的套餐通常由通用流量定向流量所组成&#xff0c;通用流量…

【Python时序预测系列】基于LSTM实现单变量时序序列多步预测(案例+源码)

这是我的第307篇原创文章。 一、引言 单站点单变量输入单变量输出多步预测问题----基于LSTM实现。 单输入就是输入1个特征变量 单输出就是预测出1个标签的结果 多步就是利用过去N天预测未来M天的结果 二、实现过程 2.1 读取数据集 # 读取数据集 data pd.read_csv(data.c…

HTML5文旅文化旅游网站模板源码

文章目录 1.设计来源文旅宣传1.1 登录界面演示1.2 注册界面演示1.3 首页界面演示1.4 文旅之行界面演示1.5 文旅之行文章内容界面演示1.6 关于我们界面演示1.7 文旅博客界面演示1.8 文旅博客文章内容界面演示1.9 联系我们界面演示 2.效果和源码2.1 动态效果2.2 源代码2.3 源码目…

笔记本电脑屏幕模糊?6招恢复屏幕清晰!

在数字化时代的浪潮中&#xff0c;笔记本电脑已成为我们生活、学习和工作中不可或缺的一部分。然而&#xff0c;当那曾经清晰明亮的屏幕逐渐变得模糊不清时&#xff0c;无疑给我们的使用体验蒙上了一层阴影。屏幕模糊不仅影响视觉舒适度&#xff0c;更可能对我们的工作效率和眼…