【Python时序预测系列】基于LSTM实现单变量时序序列多步预测(案例+源码)

这是我的第307篇原创文章。

一、引言

单站点单变量输入单变量输出多步预测问题----基于LSTM实现。

单输入就是输入1个特征变量

单输出就是预测出1个标签的结果

多步就是利用过去N天预测未来M天的结果

二、实现过程

2.1 读取数据集

# 读取数据集
data = pd.read_csv('data.csv')
# 将日期列转换为日期时间类型
data['Month'] = pd.to_datetime(data['Month'])
# 将日期列设置为索引
data.set_index('Month', inplace=True)

data:

图片

2.2 划分数据集

# 拆分数据集为训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()

共144条数据,8:2划分:训练集115,测试集29。

训练集和测试集:

图片

2.3 归一化

scaler = MinMaxScaler()
df_for_training_scaled = scaler.fit_transform(train_data.values.reshape(-1, 1))
df_for_testing_scaled = scaler.transform(test_data.values.reshape(-1, 1))

2.4 构造LSTM数据集(时序-->监督学习)

def split_series(series, n_past, n_future):pass# 假设给定过去 10 天的观察结果,我们需要预测接下来的 3 天观察结果
n_past = 10
n_future = 3
n_features = 1
# # 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
X_train, y_train = split_series(df_for_training_scaled,n_past, n_future)
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1],n_features))
y_train = y_train.reshape((y_train.shape[0], y_train.shape[1], n_features))
X_test, y_test = split_series(df_for_testing_scaled,n_past, n_future)
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1],n_features))
y_test = y_test.reshape((y_test.shape[0], y_test.shape[1], n_features))print("trainX Shape-- ",X_train.shape)
print("trainY Shape-- ",y_train.shape)
print("testX Shape-- ",X_test.shape)
print("testY Shape-- ",y_test.shape)

假设给定过去 10 天的观察结果,预测接下来的 3 天观察结果:

取出df_for_training_scaled第【1-10】行第【1】列的10条数据作为X_train[0],取出df_for_training_scaled第【11-13】行第【1】列的3条数据作为y_train[0];

取出df_for_training_scaled第【2-11】行第【1】列的10条数据作为X_train[1],取出df_for_training_scaled第【12-14】行第【1】列的3条数据作为y_train[1];

取出df_for_training_scaled第【103-112】行第【1】列的10条数据作为X_train[102],取出df_for_training_scaled第【113-115】行第【1】列的3条数据作为y_train[102];

依此类推。最终构造出的训练集数量(103)比划分时候的训练集数量(115)少一个12(n_past+n_future-1)。

图片

X_train是一个(103,10,1)的三维数组,三个维度分布表示(样本数量,步长,特征数),每一个样本比如X_train[0]是一个(10,1)二维数组表示(步长,特征数),这也是seq2seq模型每一步的输入。

图片

y_train是一个(103,3,1)的三维数组,三个维度分布表示(样本数量,步长,标签数),每一个样本比如y_train[0]是一个(3,1)二维数组表示(步长,标签数),这也是seq2seq模型每一步的输出。

图片

2.5 建立模拟合模型

encoder_inputs = Input(shape=(n_past, n_features))
encoder_l1 = LSTM(100, return_state=True)
encoder_outputs1 = encoder_l1(encoder_inputs)
encoder_states1 = encoder_outputs1[1:]
decoder_inputs = RepeatVector(n_future)(encoder_outputs1[0])
decoder_l1 = LSTM(100, return_sequences=True)(decoder_inputs,initial_state = encoder_states1)
decoder_outputs1 = TimeDistributed(Dense(n_features))(decoder_l1)
model_e1d1 = Model(encoder_inputs,decoder_outputs1)
model_e1d1.summary()

这是一个多输入多输出的 seq2seq 模型:具有一个编码器层和一个解码器层的序列到序列模型。

图片

进行训练:

reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.90 ** x)
model_e1d1.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.Huber())
history_e1d1=model_e1d1.fit(X_train,y_train,epochs=25,validation_data=(X_test,y_test),batch_size=32,verbose=0,callbacks=[reduce_lr])

2.6 进行预测

进行预测,上面我们分析过模型每一步的输入是一个(10,1)二维数组表示(步长,特征数),模型每一步的输出是是一个(3,1)二维数组表示(步长,标签数)

prediction_test = model.predict(testX)

如果直接model.predict(testX),testX的形状是(17,10,1),是一个批量预测,输出prediction_test是一个(17,3,1)的三维数组,prediction_test[0]就是第一个样本未来3天标签的预测结果,prediction_test[1]就是第二个样本未来3天标签的预测结果...

图片

看一下第一个测试集样本的预测情况:

pred_e1d1_0 = pred_e1d1[0]
pred_e1d1_0_T = scaler.inverse_transform(pred_e1d1_0)y_test_0 = y_test[0]
y_test_0_T = scaler.inverse_transform(y_test_0)

预测值(未来3天变量的预测):

图片

真实值(未来3天变量的真值):

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/33005.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5文旅文化旅游网站模板源码

文章目录 1.设计来源文旅宣传1.1 登录界面演示1.2 注册界面演示1.3 首页界面演示1.4 文旅之行界面演示1.5 文旅之行文章内容界面演示1.6 关于我们界面演示1.7 文旅博客界面演示1.8 文旅博客文章内容界面演示1.9 联系我们界面演示 2.效果和源码2.1 动态效果2.2 源代码2.3 源码目…

Spring Boot框架原理及应用详解(三)

本系列文章简介: 在当今的软件开发世界中,快速迭代、高效开发以及易于维护成为了开发者们不断追求的目标。Spring Boot作为Spring框架的一个子项目,自其诞生以来就凭借其“约定大于配置”的理念和自动配置的特性,迅速在Java开发社区中获得了广泛的关注和认可。它简化了Spri…

QT 中ListView和ListWidget有什么区别

ListView和ListWidget在Qt框架中都是用于显示列表数据的控件,但它们在使用方法和特性上存在一些明显的差异。以下是关于它们用法不一样的地方的详细分析: 数据管理方式: ListView:使用QAbstractItemModel数据模型来管理和显示列表…

electron录制应用-自由画板功能

功能 录屏过程中的涂画功能允许用户在录制屏幕操作的同时,实时添加注释和高亮显示,以增强信息的传达和观众的理解。 效果 electron录制-添加画布 代码实现 1、利用HTML5的Canvas元素实现一个自由涂画的功能,允许用户在网页上进行手绘创作。…

笔记本电脑屏幕模糊?6招恢复屏幕清晰!

在数字化时代的浪潮中,笔记本电脑已成为我们生活、学习和工作中不可或缺的一部分。然而,当那曾经清晰明亮的屏幕逐渐变得模糊不清时,无疑给我们的使用体验蒙上了一层阴影。屏幕模糊不仅影响视觉舒适度,更可能对我们的工作效率和眼…

【AI大模型】驱动的未来:穿戴设备如何革新血液、皮肤检测与营养健康管理

文章目录 1. 引言2. 现状与挑战3. AI大模型与穿戴设备概述4. 数据采集与预处理4.1 数据集成与增强4.2 数据清洗与异常检测 5. 模型架构与训练5.1 高级模型架构5.2 模型训练与调优 6. 个性化营养建议系统6.1 营养建议生成优化6.2 用户反馈与系统优化 7. 关键血液成分与健康状况评…

WIN Semis揭幕耐湿砷化镓pHEMT技术

​犹如为无线通信领域注入了一股清新的活力。这项技术不仅支持E频带,更在晶圆级上筑起了一道坚固的防潮屏障,满足了对严苛环境条件的bHAST挑战。今日,WIN半导体公司正式公布了0.1m pHEMT技术PP10-29的测试版,预示着通信领域的新篇…

React学习(一)

React的详细解析: 1. React的起源与背景 React起源于Facebook的内部项目,旨在解决市场上JavaScript MVC框架的不足之处。React的早期原型被称为“FaxJS”,由Facebook工程师Jordan Walke开发,深受XHP(一个简单的PHP HTML组件框架…

ansible 任务块以及循环

任务块 可以通过block关键字,将多个任务组合到一起可以将整个block任务组,一起控制是否要执行 # 如果webservers组中的主机系统发行版是Rocky,则安装并启动nginx [rootpubserver ansible]# vim block1.yml --- - name: block tasks hosts…

墨刀原型工具-小白入门篇

墨刀原型工具-小白入门篇 简介 随着互联网的发展和用户体验的重要性越来越受到重视,原型设计逐渐成为了产品设计中的重要环节。墨刀作为一款原型设计工具,以其简洁、易用的特点,受到了很多设计师的喜爱。本文将介绍墨刀原型工具的基本使用方…

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和…

Go 如何使用指针灵活操作内存

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Leetcode 3196. Maximize Total Cost of Alternating Subarrays

Leetcode 3196. Maximize Total Cost of Alternating Subarrays 1. 解题思路2. 代码实现 题目链接:3196. Maximize Total Cost of Alternating Subarrays 1. 解题思路 这一题就是一个动态规划,只需要考虑每一个元素作为开始和处于序列当中的二元态即可…

深度学习引言

深度学习引言 什么是神经网络? 我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。 神经网络的监督学习 关于神经网络也有很多的种类,考虑到它们的使用效果,有些使用起来恰到好处,但事实…

90天瘦30斤瘦身计划

90天瘦30斤瘦身计划 重要提示: 在开始任何减肥计划之前,强烈建议咨询医生或营养师以确保该计划适合您的健康状况。减肥过快可能对身体健康产生负面影响,因此请确保您的方法既安全又可持续。 目标: 在90天内健康地减轻30斤体重。…

爬虫笔记14——爬取网页数据写入MongoDB数据库,以爱奇艺为例

下载MongoDB数据库 首先,需要下载MongoDB数据库,下载的话比较简单,直接去官网找到想要的版本下载即可,具体安装过程可以看这里。 pycharm下载pymongo库 pip install pymongo然后在在python程序中我们可以这样连接MongoDB数据库…

红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全非约束系约束系RBCD资源系Spooler利用

#委派安全知识点 委派是一种域内应用模式,是指将域内用户账户的权限委派给服务账号,服务账号因此能以用户的身份在域内展开活动(请求新的服务等),类似于租房中介房东的关系去理解。 域委派分类: 1、非约束委派(Unconstrained Delegation, UD) 2、约束委派(Constrained D…

【Linux】使用 rz 和 sz 命令在 Linux 中进行文件传输

那年夏天我和你躲在 这一大片宁静的海 直到后来我们都还在 对这个世界充满期待 今年冬天你已经不在 我的心空出了一块 很高兴遇见你 让我终究明白 回忆比真实精彩 🎵 王心凌《那年夏天宁静的海》 在 Linux 系统中,rz 和 sz 是两个用…

深度神经网络:解锁智能的密钥

深度神经网络:解锁智能的密钥 在人工智能的浩瀚星空中,深度神经网络(Deep Neural Networks, DNNs)无疑是最耀眼的那颗星。它以其强大的学习能力、高度的适应性和广泛的应用场景,成为了我们解锁智能世界的一把密钥。本…

[个人感悟] MySQL应该考察哪些问题?

前言 MySQL作为SQL类型基础典型, 通常会问, 索引, 事务, SQL实战 这3个部分的问题. 问题 问题-架构 能聊聊MySQL的基本架构么? MySQL支持的存储引擎有哪些, 你主要使用过哪种? 说说你的理解? 问题-索引 什么是索引? MYSQL内所有的基本种类有哪些?不同分类…