【树形dp 换根法 BFS】2581. 统计可能的树根数目

本文涉及知识点

C++BFS算法
动态规划汇总
图论知识汇总
树形dp 换根法 BFS

LeetCode 2581. 统计可能的树根数目

Alice 有一棵 n 个节点的树,节点编号为 0 到 n - 1 。树用一个长度为 n - 1 的二维整数数组 edges 表示,其中 edges[i] = [ai, bi] ,表示树中节点 ai 和 bi 之间有一条边。
Alice 想要 Bob 找到这棵树的根。她允许 Bob 对这棵树进行若干次 猜测 。每一次猜测,Bob 做如下事情:
选择两个 不相等 的整数 u 和 v ,且树中必须存在边 [u, v] 。
Bob 猜测树中 u 是 v 的 父节点 。
Bob 的猜测用二维整数数组 guesses 表示,其中 guesses[j] = [uj, vj] 表示 Bob 猜 uj 是 vj 的父节点。
Alice 非常懒,她不想逐个回答 Bob 的猜测,只告诉 Bob 这些猜测里面 至少 有 k 个猜测的结果为 true 。
给你二维整数数组 edges ,Bob 的所有猜测和整数 k ,请你返回可能成为树根的 节点数目 。如果没有这样的树,则返回 0。
示例 1:
输入:edges = [[0,1],[1,2],[1,3],[4,2]], guesses = [[1,3],[0,1],[1,0],[2,4]], k = 3
输出:3
解释:
根为节点 0 ,正确的猜测为 [1,3], [0,1], [2,4]
根为节点 1 ,正确的猜测为 [1,3], [1,0], [2,4]
根为节点 2 ,正确的猜测为 [1,3], [1,0], [2,4]
根为节点 3 ,正确的猜测为 [1,0], [2,4]
根为节点 4 ,正确的猜测为 [1,3], [1,0]
节点 0 ,1 或 2 为根时,可以得到 3 个正确的猜测。
示例 2:
输入:edges = [[0,1],[1,2],[2,3],[3,4]], guesses = [[1,0],[3,4],[2,1],[3,2]], k = 1
输出:5
解释:
根为节点 0 ,正确的猜测为 [3,4]
根为节点 1 ,正确的猜测为 [1,0], [3,4]
根为节点 2 ,正确的猜测为 [1,0], [2,1], [3,4]
根为节点 3 ,正确的猜测为 [1,0], [2,1], [3,2], [3,4]
根为节点 4 ,正确的猜测为 [1,0], [2,1], [3,2]
任何节点为根,都至少有 1 个正确的猜测。
提示:
edges.length == n - 1
2 <= n <= 105
1 <= guesses.length <= 105
0 <= ai, bi, uj, vj <= n - 1
ai != bi
uj != vj
edges 表示一棵有效的树。
guesses[j] 是树中的一条边。
guesses 是唯一的。
0 <= k <= guesses.length

换根法

某棵有根树,根为root,某个儿子为child,则将根从root换成child后,除 r o o t ↔ c h i l d root\leftrightarrow child rootchild这条的边的父子关系发生变化外,其它都不边。
mGuesss[x] 记录猜测次数:x=Mask(r,v) = u*n+v
x1 = Mask(root,child)
x2 = Mask(child,root)
则 dp[child] = dp[root] - mGuesss[x1] + mGuress[x2]
分三步:
一,令root为0,计算m_dp[0]。
二,dfs各节点计算m_dp[cur]。
三,统计m_dp中为k的元素数量。

动态规划的状态表示

m_dp[cur]表示以cur为根据猜对父子关系的数量。
空间复杂度: O(n)

动态规划的转移方程

dp[child] = dp[root] - mGuesss[x1] + mGuress[x2]
单个状态的转移方程时间复杂度:O(1) 总时间复杂度:O(n)

动态规划的初始值

dp[0]先计算

动态规划的填表顺序

深度优先,广度优先也可以。

动态规划的返回值

cout(dp.being(),dp.end(),k)

代码(超时)

核心代码

class CNeiBo
{
public:	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) {vector<vector<int>>  vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);}}return vNeiBo;}	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}return vNeiBo;}static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat){vector<vector<int>> neiBo(neiBoMat.size());for (int i = 0; i < neiBoMat.size(); i++){for (int j = i + 1; j < neiBoMat.size(); j++){if (neiBoMat[i][j]){neiBo[i].emplace_back(j);neiBo[j].emplace_back(i);}}}return neiBo;}
};class Solution {
public:int rootCount(vector<vector<int>>& edges, vector<vector<int>>& guesses, int k) {m_c = edges.size() + 1;m_dp.resize(m_c);m_vNeiBo = CNeiBo::Two(m_c, edges, false);for (const auto& v : guesses) {m_mGuess[Mask(v[0], v[1])]++;}m_dp[0] = DFS1(0, -1);DFS2(0, -1);return count_if(m_dp.begin(), m_dp.end(), [&](int i) {return i >= k; });}int DFS1(int cur, int par) {int ret = 0;if (-1 != par) { ret += m_mGuess[Mask(par, cur)];}for (const auto& next : m_vNeiBo[cur]) {if (next == par) { continue; }ret += DFS1(next, cur);}return ret;}void DFS2(int cur, int par) {if (-1 != par) {m_dp[cur] = m_dp[par];m_dp[cur] -= m_mGuess[Mask(par, cur)];m_dp[cur] += m_mGuess[Mask(cur, par)];}	for (const auto& next : m_vNeiBo[cur]) {if (next == par) { continue; }DFS2(next, cur);}}long long Mask(long long par, int cur) { return m_c * par + cur; }int m_c;vector<int> m_dp;unordered_map<long long, int> m_mGuess;vector < vector <int>> m_vNeiBo;
};

单元测试

template<class T1, class T2>
void AssertEx(const T1& t1, const T2& t2)
{Assert::AreEqual(t1, t2);
}template<class T>
void AssertEx(const vector<T>& v1, const vector<T>& v2)
{Assert::AreEqual(v1.size(), v2.size());for (int i = 0; i < v1.size(); i++){Assert::AreEqual(v1[i], v2[i]);}
}template<class T>
void AssertV2(vector<vector<T>> vv1, vector<vector<T>> vv2)
{sort(vv1.begin(), vv1.end());sort(vv2.begin(), vv2.end());Assert::AreEqual(vv1.size(), vv2.size());for (int i = 0; i < vv1.size(); i++){AssertEx(vv1[i], vv2[i]);}
}namespace UnitTest
{vector<vector<int>> edges, guesses;int k;TEST_CLASS(UnitTest){public:TEST_METHOD(TestMethod0){edges = { {0,1},{1,2},{1,3},{4,2} }, guesses = { {1,3},{0,1},{1,0},{2,4} }, k = 3;auto res = Solution().rootCount(edges, guesses, k);AssertEx(3, res);}TEST_METHOD(TestMethod1){edges = { {0,1},{1,2},{2,3},{3,4} }, guesses = { {1,0},{3,4},{2,1},{3,2} }, k = 1;auto res = Solution().rootCount(edges, guesses, k);AssertEx(5, res);}TEST_METHOD(TestMethod2){edges ={ {1,0},{2,1},{2,3},{4,0},{5,2},{6,1},{0,7},{1,8},{9,6},{10,4},{11,10},{12,8},{8,13},{14,4},{15,9},{9,16},{3,17},{4,18},{6,19},{20,13},{21,20},{19,22},{23,3},{24,0},{25,14},{17,26},{27,3},{3,28},{29,3},{4,30},{31,9},{0,32},{33,12},{34,14},{27,35},{35,36},{37,33},{38,18},{6,39} };guesses ={ {13,8},{4,18},{37,33},{4,30},{1,8},{3,17},{25,14},{0,1},{27,35},{21,20},{6,1},{26,17},{1,2},{8,13},{22,19},{30,4},{4,0},{2,5},{14,4},{9,6},{19,22},{16,9},{5,2},{29,3},{34,14},{8,1},{11,10},{15,9},{10,4},{35,27},{3,27},{33,12},{14,34},{32,0},{14,25},{39,6},{7,0},{4,10},{0,32},{23,3},{20,21},{24,0},{0,7},{1,0},{3,28},{6,9},{8,12},{18,4},{1,6},{2,1},{2,3},{3,29},{9,16},{17,26},{35,36},{13,20},{10,11},{18,38},{3,23},{0,24},{33,37},{12,33},{3,2},{20,13},{17,3} };k =	29;auto res = Solution().rootCount(edges, guesses, k);AssertEx(40, res);}};
}

DFS非常容易超时

DFS稍稍复杂,leetcode就容易超时。
所以:
一,计算出临接表。
二,DFS各节点层次。
三,计算出各节点的孩子。
四,BFS各节点。由于每个节点顶多一个父亲,所以无需判断节点是否重复访问。

class CNeiBo
{
public:	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) {vector<vector<int>>  vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);}}return vNeiBo;}	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}return vNeiBo;}static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat){vector<vector<int>> neiBo(neiBoMat.size());for (int i = 0; i < neiBoMat.size(); i++){for (int j = i + 1; j < neiBoMat.size(); j++){if (neiBoMat[i][j]){neiBo[i].emplace_back(j);neiBo[j].emplace_back(i);}}}return neiBo;}
};class CDFSLeveChild
{
public:CDFSLeveChild(const vector<vector <int>>& vNeiBo,int root=0):m_vNeiBo(vNeiBo), Leve(m_vLeve){m_vLeve.resize(m_vNeiBo.size());DFS(root, -1);};const vector<int>& Leve;vector<vector<int>> Child() const{vector<vector <int>> vChild(m_vNeiBo.size());for (int i = 0; i < m_vNeiBo.size(); i++) {for (const auto& next : m_vNeiBo[i]) {if (m_vLeve[next] < m_vLeve[i]) { continue; }vChild[i].emplace_back(next);}}return vChild;}
protected:void DFS(int cur, int par) {if (-1 != par) { m_vLeve[cur] = m_vLeve[par] + 1; }for (const auto& next : m_vNeiBo[cur]) {if (next == par) { continue; }DFS(next, cur);}}vector<int> m_vLeve;const vector<vector <int>>& m_vNeiBo;
};
class Solution {
public:int rootCount(vector<vector<int>>& edges, vector<vector<int>>& guesses, int k) {m_c = edges.size() + 1;m_dp.resize(m_c);		m_vNeiBo = CNeiBo::Two(m_c, edges, false);		auto vChilds = CDFSLeveChild(m_vNeiBo).Child();for (const auto& v : guesses) {m_mGuess[Mask(v[0], v[1])]++;}for (int par = 0; par < m_c; par++) {for (int& child : vChilds[par]) {m_dp[0] += m_mGuess[Mask(par, child)];}}	queue<int> que;		que.emplace(0);while (que.size()) {int cur = que.front();que.pop();for (const auto& child : vChilds[cur]) {m_dp[child] = m_dp[cur];m_dp[child] -= m_mGuess[Mask(cur, child)];m_dp[child] += m_mGuess[Mask(child, cur)];que.emplace(child);}}return count_if(m_dp.begin(), m_dp.end(), [&](int i) {return i >= k; });}long long Mask(long long par, int cur) { return m_c * par + cur; }int m_c;vector<int> m_dp;unordered_map<long long, int> m_mGuess;vector < vector <int>> m_vNeiBo;	
};

进一步优化

可以用数组代码映射,算法方向,总共2n-2条边。假定根为0的树。
如果这条边是 子节点执行父节点,则此边数是child。如果方向相反则是n + child。
运行速度大约提高了20%。

class Solution {
public:int rootCount(vector<vector<int>>& edges, vector<vector<int>>& guesses, int k) {m_c = edges.size() + 1;m_dp.resize(m_c);	vector<int> vGuess(m_c * 2);m_vNeiBo = CNeiBo::Two(m_c, edges, false);	CDFSLeveChild dfs(m_vNeiBo);auto vChilds = dfs.Child();auto Mask = [&](int par, int child) {if (dfs.Leve[par] < dfs.Leve[child]) {return child;}return par + m_c;};for (const auto& v : guesses) {vGuess[Mask(v[0], v[1])]++;}for (int par = 0; par < m_c; par++) {for (int& child : vChilds[par]) {m_dp[0] += vGuess[Mask(par, child)];}}	queue<int> que;		que.emplace(0);while (que.size()) {int cur = que.front();que.pop();for (const auto& child : vChilds[cur]) {m_dp[child] = m_dp[cur];m_dp[child] -= vGuess[Mask(cur, child)];m_dp[child] += vGuess[Mask(child, cur)];que.emplace(child);}}return count_if(m_dp.begin(), m_dp.end(), [&](int i) {return i >= k; });}int m_c;vector<int> m_dp;	vector < vector <int>> m_vNeiBo;	
};

DFS序+差分数组

root和它的某个后代childchild换根。则到 c h i l d c h i l d ↔ r o o t childchild\leftrightarrow root childchildroot这条路径上的边都反转。可以用差分数组。
childchild和它的祖先不是连续的,但他们的DFS序是连续的。
此方案不好理解,实现也不简单。备用。

扩展阅读

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关推荐

我想对大家说的话
《喜缺全书算法册》以原理、正确性证明、总结为主。
按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/32945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《书生·浦语大模型实战营》第5课 学习笔记:LMDeploy 量化部署 LLM 实践

文章大纲 0.背景知识与简介计算机组成原理&#xff1a;变量的存储参数量与推理的关系 1.LMDeploy环境部署1.1 创建开发机1.2 创建conda环境InternStudio开发机创建conda环境&#xff08;推荐&#xff09;本地环境创建conda环境 1.3 安装LMDeploy 2.LMDeploy模型对话(chat)2.1 H…

【CSS in Depth2精译】1.2 继承~1.3 特殊值

文章目录 1.2 继承1.3 特殊值1.3.1 inherit 关键字1.3.2 initial 关键字1.3.3 unset 关键字1.3.4 revert 关键字 1.2 继承 除了层叠&#xff0c;还有一种给元素设置样式的方式&#xff1a;继承。经常有人把层叠与继承的概念弄混淆。它们虽然有关联&#xff0c;但也应该分辨清楚…

创新实训(十二) 项目开发——历史对话增加查询功能

必要性 随着对话记录的增加&#xff0c;根据对话名称conv_name查询对话对用户来说非常有必要实现。 实现 原来的history_chats.vue中使用了getChatList() 在onMounted时直接获取用户的所有对话记录&#xff0c;如果要实现查询功能&#xff0c;需要增加两个变量&#xff1a; …

【STM32入门学习】基于DHT20温湿度传感器数据采集和显示

目录 一、软件I2C和硬件I2C 1.1硬件I2C 1.2软件I2C 二、创建工程&#xff08;基于HAL库&#xff09; 三、实物连线 3.1DHT20 3.2串口传输&#xff1a; 四、结果演示 4.1部署文件 4.2主要代码分析 五、心得体会 一、软件I2C和硬件I2C I2C 基本读写过程: 其中S表示由主…

Android Basis - Google Keybox

什么是Keybox Android O 开始谷歌要求每台机器预制谷歌提供的 Attestion Key的需求&#xff0c;该需求要求,每台机器都预制谷歌提供的 key&#xff0c;因此需要 oem 厂商在工厂完成预制。没有预制该key 将直接导致机器 cts 相关测试项失败。Google attestation key的集合又称作…

Spring AI 介绍以及与 Spring Boot 项目整合

Spring AI 项目旨在简化使用 Spring Boot 开发包含人工智能功能的应用程序&#xff0c;提供抽象和支持多种模型提供商及矢量数据库提供商。 Spring AI 的功能特点 支持主流模型提供商&#xff1a;如 OpenAI、Microsoft、Amazon、Google 和 Huggingface 等。支持多种模型类型&a…

Retrieval-Augmented Generation for Large Language Models A Survey

Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 文章目录 Retrieval-Augmented Generation for Large Language Models: A Survey 文献综述 Abstract背景介绍 RAG概述原始RAG先进RAG预检索过程后检索过程 模块化RAGModules部分Patterns部分 RAG…

phpcms网站模板收费下载站素材图片网站源码

★模板介绍★ 本套源码&#xff0c;主要针对资源下载&#xff0c;素材/图片/模板/源码/插件/ 我们已经对源码进行了多处二次开发&#xff0c;对模板进行了深度优化&#xff0c;没有多余的无用代码。更符合收费下载站行业的标准&#xff0c;保证每位站长购买后多能直接用上&am…

Python | Leetcode Python题解之第187题重复的DNA序列

题目&#xff1a; 题解&#xff1a; L 10 bin {A: 0, C: 1, G: 2, T: 3}class Solution:def findRepeatedDnaSequences(self, s: str) -> List[str]:n len(s)if n < L:return []ans []x 0for ch in s[:L - 1]:x (x << 2) | bin[ch]cnt defaultdict(int)for…

vue中用JSON格式查看数据(vue-json-viewer)

vue中把string用JSON格式展示数据 vue-json-viewer使用 官网地址&#xff1a;https://www.npmjs.com/package/vue-json-viewer 1. 安装插件vue-json-viewer //vue2 npm install vue-json-viewer2 --save //vue3 npm install vue-json-viewer3 --save2. 引入vue-json-viewer…

星闪指向遥控,做家电交互的破壁人

“面壁者罗辑&#xff0c;我是你的破壁人。” 科幻小说《三体》中&#xff0c;当人类的基础科学被三体人封锁&#xff0c;变得停步不前&#xff0c;人类启动了自救的面壁计划&#xff0c;通过一次又一次破壁&#xff0c;找到战胜三体人的办法。 现实中&#xff0c;有一点已经成…

Html去除a标签的默认样式

Html去除a标签的默认样式, a标签超链接字体默认蓝色带下划线; 去除可用: a{text-decoration:none;color:inherit;cursor:auto; }测试代码 <!DOCTYPE html> <html lang"zh-CN" dir"ltr"><head><meta charset"utf-8"/>&…

上海交大阿里巴巴推出虚拟试衣新里程碑式工作——AnyFit:任意场景、任意组合!

文章链接&#xff1a;https://arxiv.org/pdf/2405.18172 工程链接&#xff1a;https://colorful-liyu.github.io/anyfit-page/ 今天和大家一起学习的是一种名为AnyFit的新型虚拟试穿系统&#xff0c;旨在解决现有技术在处理不同场景和服饰组合时出现的衣物风格不匹配和质量下…

【MySQL】Linux中MySQL的使用及配置

一、字符集修改 1、MySQL8.0之前&#xff0c;字符集都默认是latin1&#xff0c;从MySQL8.0开始&#xff0c;字符集utf8mb4&#xff0c;这意味着&#xff0c;在默认情况下&#xff0c;MySQL8.0之前都是不支持中文的 # 查看字符集信息&#xff0c;主要是character_set_server和…

能正常执行但是 cion 标红/没有字段提示

ctrl q 退出 clion 找到工程根目录&#xff0c;删除隐藏文件 .idea 再重新打开 clion 标红消失&#xff0c;同时再次输入函数/类属性&#xff0c;出现字段提示 clion 的智能提示方案存储在 .idea 文件中&#xff0c;如果工程能够正常编译执行&#xff0c;那么说明是智能提示…

【JavaSE ⑧】P219 ~ 225 Date类‘’DateFormat类转化Date和字符串;Calendar类获得日历中某值,修改日历,日历转日期

目录 日期时间类1 Date类概述常用方法 2DateFormat类构造方法格式规则常用方法parse方法format方法 3 Calendar类概念获取方式常用方法get/set方法add方法getTime方法 ● 练习1.判断Date不同参数构造的输出2. 用日期时间相关的API&#xff0c;计算一个人已经出生了多少天。3. 获…

技术管理转型之战:解锁管理新境界——直觉决策的艺术与科学

文章目录 引言一、直觉决策的定义与特点二、直觉决策在管理中的价值三、直觉决策的来源1、潜意识的心里过程2、基于价值观或道德的决策3、基于经验的决策4、影响发动的决策5、基于认知的决策 四、如何培养直觉决策能力五、直觉决策的风险与应对结语 引言 在快速变化的商业环境…

[FreeRTOS 内部实现] 创建任务 xTaskCreate函数解析

文章目录 创建任务 xTaskCreate函数原型栈深度 usStackDepth 大小如何确定任务堆空间分配 任务控制块 TCB 创建任务 xTaskCreate函数原型 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,const char * const pcName,const configSTACK_DEPTH_TYPE usStackDepth,void *…

JVM专题三:Java代码如何运行

通过前面的第一篇文章&#xff0c;对JVM整体脉络有了一个大概了解。第二篇文章我们通过对高级语言低级语言不同特性的探讨引出了Java的编译过程。有了前面的铺垫&#xff0c;咱们今天正式进入Java到底是如何运行起来的探讨。 目前大部分公司都是使用maven作为包管理工具&#x…

lvgl_micropython development for esp32

​​​​​​上一篇博客已经编译源码生成了ESP32C3的固件lvgl_micropy_ESP32_GENERIC_C3-4.bin&#xff0c;这篇博客开发一个界面。 一、开发环境 1、安装开发工具 Windows安装Thonny工具&#xff0c;官网链接&#xff1a;Thonny, Python IDE for beginners。 参考博客:用M…