torch.max函数

torch.max函数的用法

    • 第一种
    • 第二种

官方介绍:Link

有两种使用场景,输入的参数不同以及返回值不同:

第一种

没有参数dim,但这种只适合一维张量。

torch.max(input) → Tensor

Returns the maximum value of all elements in the input tensor.

举例:

>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763,  0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)

第二种

指定了参数dim,这种就适合多维张量了。

Notes:dim参数的值跟函数选取最大值的结果关系。我觉的还是挺让我意外的,和我想的不太一样。

torch.max(input, dim, keepdim=False, *, out=None)

  这种情况下函数会返回一个元组(values,indices),其中,每一个value是input张量中在给定的dim维度中的最大值。并且indices是找到的每一个最大值的索引。

  如果keepdim=True,那么输出的tensors和input保持相同的size,除了在dim维度上size为1哦!否则,如果keepdim=False,那么dim所在的维度是会被squeeze的,也就是输出的tensors比input少一个维度。

Notes:但是,再次注意,dim的数值和挑选最大值方式之间的关系。请看下面的例子:

import torchtensor = torch.randn(4, 4)
tensortensor([[ 0.1789,  0.7102,  0.7627,  0.4721],[-0.2287, -0.7618,  0.1439, -0.5439],[-0.4963,  0.3786,  0.1666, -0.5676],[ 0.6240,  0.0017,  1.0748,  0.4061]])
torch.max(tensor, dim=1)torch.return_types.max(
values=tensor([0.7627, 0.1439, 0.3786, 1.0748]),
indices=tensor([2, 2, 1, 2]))

  所以,从这个结果可以看出,对于这个二维张量而言,dim=1,表示最大值的选取方式是固定行,然后从所有列中选取最大值

再举一个三维数组的例子看看:

import torch
mine = torch.rand(3, 4, 4)
minetensor([[[0.0945, 0.1062, 0.1506, 0.1382],[0.2846, 0.4346, 0.1247, 0.3741],[0.9909, 0.7365, 0.6959, 0.8086],[0.4392, 0.0296, 0.8124, 0.1953]],[[0.6884, 0.9824, 0.4943, 0.6683],[0.5548, 0.7565, 0.2543, 0.3552],[0.0100, 0.5609, 0.9483, 0.6310],[0.3992, 0.1476, 0.9362, 0.0209]],[[0.8073, 0.9579, 0.2604, 0.0848],[0.3591, 0.4507, 0.5978, 0.6411],[0.6008, 0.0967, 0.7433, 0.0602],[0.9017, 0.2228, 0.1419, 0.3229]]])
res = torch.max(mine, dim=2)  #注意维度dim=2了哦!
restorch.return_types.max(
values=tensor([[0.1506, 0.4346, 0.9909, 0.8124],[0.9824, 0.7565, 0.9483, 0.9362],[0.9579, 0.6411, 0.7433, 0.9017]]),
indices=tensor([[2, 1, 0, 2],[1, 1, 2, 2],[1, 3, 2, 0]]))
res[0].shapetorch.Size([3, 4])

现在能get到torch.max函数在取最大值的方式跟dim是什么关系了吗?
就是

那下面是感受当keepdim=True的结果,

res = torch.max(mine, dim=2, keepdim=True)
restorch.return_types.max(
values=tensor([[[0.1506],[0.4346],[0.9909],[0.8124]],[[0.9824],[0.7565],[0.9483],[0.9362]],[[0.9579],[0.6411],[0.7433],[0.9017]]]),
indices=tensor([[[2],[1],[0],[2]],[[1],[1],[2],[2]],[[1],[3],[2],[0]]]))
res[0].shapetorch.Size([3, 4, 1])

所以现在能get到函数的输出结果跟keepdim参数的关系了吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/31655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MPLS-LDP(个人学习笔记)

定义 标签分发协议LDP(Label Distribution Protocol)是多协议标签交换MPLS的一种控制协议,负责转发等价类FEC的分类、标签的分配以及标签交换路径LSP的建立和维护等操作。LDP规定了标签分发过程中的各种消息以及相关处理过程 术语 LDP会话&a…

【尚庭公寓SpringBoot + Vue 项目实战】移动端找房功能(二十一)

【尚庭公寓SpringBoot Vue 项目实战】移动端找房功能(二十一) 文章目录 【尚庭公寓SpringBoot Vue 项目实战】移动端找房功能(二十一)1、业务介绍2、接口开发2.1、地区信息2.2、获取全部支付方式列表2.3、房间信息2.2.1. 根据条…

python基础1.1-格式化输出(%用法和format用法)

目录 %用法 format用法 %用法 1、整数的输出 %o —— oct 八进制 %d —— dec 十进制 %x —— hex 十六进制 1 >>> print(%o % 20) 2 24 3 >>> print(%d % 20) 4 20 5 >>> print(%x % 20) 6 142、浮点数输出 (1)格式化…

鸿蒙开发系统基础能力:【@ohos.accessibility (辅助功能)】

辅助功能 说明: 本模块首批接口从 API version 7 开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import accessibility from ohos.accessibility;AbilityState 辅助应用状态类型。 系统能力:以下各项对应的…

智能体合集

海外版coze: 前端代码助手 后端代码助手: 前端代码助手:

glXMakeCurrent 退出

glXMakeCurrent 退出 X Error of failed request: GLXBadDrawable Major opcode of failed request: 146 (GLX) Minor opcode of failed request: 29 (X_GLXGetDrawableAttributes) Serial number of failed request: 90 Current serial number in output stream: …

优惠券核销业务

优惠券核销业务,包含 买券,券核销,退券,退款,过期自动退。 优惠券 为了促销,商家有时会发放一些优惠券,比如 80 抵 100。抖音、美团,都有类似的业务。 购买优惠券 优惠券&#x…

C++核心编程运算符的重载

C核心编程运算符的重载 文章目录 C核心编程运算符的重载1.“”运算符的重载1.1 作为成员函数重载1.2 作为全局函数重载 2."<<"运算符重载2.1为什么需要重载左移运算符2.2如何重载左移运算符2.3注意事项 3.""运算符重载3.1 前置递增运算符重载3.2后置…

添加右键菜单(以git为例)

1、打开注册表编辑器 打开系统注册表&#xff0c;使用组合键“Win R”输入“regedit”。 依次展开”HKEY_CLASSES_ROOT\Directory\Background\shell”。 2、新建右键菜单项 在[Background]下找到“shell”如果没有则新建项shell&#xff0c;接着在“shell”下右键-新建项名…

算法训练营day66-孤岛总面积-沉没孤岛-水流问题-建造最大岛屿

题目1&#xff1a;101. 孤岛的总面积 (kamacoder.com) #include <iostream> #include <vector> #include <queue> using namespace std; int dir[4][2] {0,-1,-1,0,0,1,1,0}; int count 0; void bfs(vector<vector<int>>& map, vector<…

智能农业管理系统设计

一、引言 随着物联网、云计算和大数据技术的快速发展&#xff0c;智能农业管理系统成为提高农业生产效率、优化资源配置、降低环境污染的重要手段。本设计旨在构建一个集数据采集、传输、处理、分析于一体的智能农业管理系统&#xff0c;为农业生产提供全方位、精准化的服务。 …

基于DPU的云原生裸金属网络解决方案

1. 方案背景和挑战 裸金属服务器是云上资源的重要部分&#xff0c;其网络需要与云上的虚拟机和容器互在同一个VPC下&#xff0c;并且能够像容器和虚拟机一样使用云的网络功能和能力。 传统的裸金属服务器使用开源的 OpenStack Ironic 组件&#xff0c;配合 OpenStack Neutron…

修改主频睡眠模式停止模式待机模式

代码示例&#xff1a; 接线图&#xff1a;修改主频 接线图&#xff1a;睡眠模式串口发送接收 CH340 USB转串口模块。GND和stm32共地。RXD接PA9&#xff0c;TXD接PA10。 接线图&#xff1a;停止模式对射式红外传感器计次 对射式红外传感器模块的VCC和GND接上供电。DO输出接S…

张大哥笔记:5种信息差赚钱模式

从古至今&#xff0c;赚钱最快的路子就一个&#xff0c;而且从未改变&#xff0c;那就是信息差&#xff01;在商业活动中&#xff0c;信息不对称现象普遍存在&#xff0c;如果你善于利用这些信息差的话&#xff0c;就可以赚到钱&#xff01; 1、价格的信息差 商品价格在不同地…

python pyautogui实现图片识别点击失败后重试

安装库 pip install Pillow pip install opencv-python confidence作用 confidence 参数是用于指定图像匹配的信度&#xff08;或置信度&#xff09;的&#xff0c;它表示图像匹配的准确程度。这个参数的值在 0 到 1 之间&#xff0c;数值越高表示匹配的要求越严格。 具体来…

ConcurrentHashMap(应对并发问题的工具类)

并发工具类 在JDK的并发包里提供了几个非常有用的并发容器和并发工具类。供我们在多线程开发中进行使用。 5.1 ConcurrentHashMap 5.1.1 概述以及基本使用 在集合类中HashMap是比较常用的集合对象&#xff0c;但是HashMap是线程不安全的(多线程环境下可能会存在问题)。为了…

可一件转化的视频生成模型:快手官方大模型“可灵”重磅来袭!

可一件转化的视频生成模型“可灵”重磅来袭&#xff01; 前言 戴墨镜的蒙娜丽莎 达芬奇的画作《蒙娜丽莎的微笑》相信大家是在熟悉不过了&#xff0c;可《戴墨镜的蒙娜丽莎》大家是不是第一次见&#xff1f;而且这还不是以照片的形式&#xff0c;而是以视频的形式展示给大家。 …

Spring AOP实战--之优雅的统一打印web请求的出参和入参

背景介绍 由于实际项目内网开发&#xff0c;项目保密&#xff0c;因此本文以笔者自己搭建的demo做演示&#xff0c;方便大家理解。 在项目开发过程中&#xff0c;团队成员为了方便调试&#xff0c;经常会在方法的出口和入口处加上log输出&#xff0c;由于每个人的log需求和输…

奔驰EQS SUV升级原厂主动式氛围灯效果展示

以下是一篇关于奔驰 EQs 升级原厂主动氛围灯案例的宣传文案&#xff1a; 在汽车科技不断演进的今天&#xff0c;我们自豪地为您呈现奔驰 EQs 升级原厂主动氛围灯的精彩案例。 奔驰 EQs&#xff0c;作为豪华电动汽车的典范&#xff0c;其卓越品质与高端性能有目共睹。而此次升…

CVPR 2024盛况空前,上海科技大学夺得最佳学生论文奖,惊艳全场

CVPR 2024盛况空前&#xff01;上海科技大学夺得最佳学生论文奖&#xff0c;惊艳全场&#xff01; 会议之眼 快讯 2024 年 CVPR &#xff08;Computer Vision and Pattern Recogntion Conference) 即国际计算机视觉与模式识别会议&#xff0c;于6月17日至21日正在美国西雅图召…