Matlab数学建模实战应用:案例3 - 投资组合优化

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

完整代码示例

四、模型验证

五、模型应用

实例示范:投资组合优化

步骤 1:导入数据并计算统计量

步骤 2:建立优化模型并求解

步骤 3:绘制有效前沿(Efficient Frontier)

步骤 4:比较不同投资组合策略

步骤 5:回测和风险评估

步骤 6:计算夏普比率和最大回撤

步骤 7:应用模型进行投资决策支持和资产再平衡

实例总结

投资决策支持

资产再平衡

风险监控

总结


前言

投资组合优化是金融工程中的核心问题之一,通过合理分配资金在不同资产之间,可以在控制风险的同时最大化收益。本文将详细介绍一个投资组合优化的完整过程,包括问题分析、模型选择、Matlab代码实现、模型验证和应用。

一、问题分析

  1. 投资目标

    • 投资者通常希望通过组合投资来分散风险,同时获得合理回报。常见的目标包括最大化收益、最小化风险或在特定风险水平下最大化收益。
  2. 风险控制

    • 分散投资的主要目的是通过持有不同资产,降低单个资产的波动对整体组合的影响。风险控制可以通过方差或标准差等指标来衡量。
  3. 资产收益率

    • 每个资产的预期收益率是投资决策的重要依据,可以通过历史数据或金融模型获得。
  4. 投资组合策略

    • 投资组合策略包括均值-方差模型(Markowitz模型)、资本资产定价模型(CAPM)等。

二、模型建立

三、Matlab代码实现

以下是使用Markowitz模型进行投资组合优化的完整代码示例。

  1. 导入数据
    • 假设资产的历史收益率信息存储在文件assets_data.csv中。

    % 读取资产收益率数据data = readtable('assets_data.csv');returns = data{:,:}; % 假设数据的各列为不同资产的收益率num_assets = size(returns, 2);% 计算资产的期望收益率和协方差矩阵exp_returns = mean(returns);cov_matrix = cov(returns);

  1. 建立优化模型
    • 使用Markowitz均值-方差模型寻找最优投资组合。

    % 设置优化目标和约束target_return = 0.02; % 目标收益率Aeq = ones(1, num_assets); % 权重之和为1beq = 1;lb = zeros(num_assets, 1); % 各资产权重要大于等于0ub = ones(num_assets, 1); % 各资产权重要小于等于1% 使用quadprog求解二次规划问题options = optimoptions('quadprog', 'Display', 'off');w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 输出最优权重和预期收益、风险optimal_return = exp_returns * w;optimal_risk = sqrt(w' * cov_matrix * w);disp(['Optimal Weights: ', num2str(w')]);disp(['Expected Return: ', num2str(optimal_return)]);disp(['Expected Risk: ', num2str(optimal_risk)]);

  1. 绘制有效前沿(Efficient Frontier)
    • 通过绘制有效前沿,我们可以看到在不同收益率和风险水平下的最优投资组合。

    % 生成不同目标收益率下的有效前沿target_returns = linspace(min(exp_returns), max(exp_returns), 50);risks = zeros(size(target_returns));weights = zeros(num_assets, length(target_returns));for i = 1:length(target_returns)rt = target_returns(i);w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);weights(:, i) = w;risks(i) = sqrt(w' * cov_matrix * w);end% 绘制有效前沿figure;plot(risks, target_returns, 'LineWidth', 2);title('Efficient Frontier');xlabel('Risk (Standard Deviation)');ylabel('Return');grid on;

  1. 比较不同投资组合策略
    • 通过比较不同的投资组合策略(如等权重策略、风险最小化策略)来评估各策略的优缺点。

    % 等权重策略w_eq = ones(num_assets, 1) / num_assets;return_eq = exp_returns * w_eq;risk_eq = sqrt(w_eq' * cov_matrix * w_eq);% 风险最小化策略w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);return_min_risk = exp_returns * w_min_risk;risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);% 绘制比较图figure;plot(risks, target_returns, 'LineWidth', 2);hold on;scatter(risk_eq, return_eq, 50, 'r', 'filled');scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');title('Comparison of Investment Strategies');xlabel('Risk (Standard Deviation)');ylabel('Return');grid on;

完整代码示例

% 读取资产收益率数据
data = readtable('assets_data.csv');
returns = data{:,:}; % 假设数据的各列为不同资产的收益率
num_assets = size(returns, 2);% 计算资产的期望收益率和协方差矩阵
exp_returns = mean(returns);
cov_matrix = cov(returns);% 设置优化目标和约束
target_return = 0.02; % 目标收益率
Aeq = ones(1, num_assets); % 权重之和为1
beq = 1;
lb = zeros(num_assets, 1); % 各资产权重要大于等于0
ub = ones(num_assets, 1); % 各资产权重要小于等于1% 使用quadprog求解二次规划问题
options = optimoptions('quadprog', 'Display', 'off');
w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 输出最优权重和预期收益、风险
optimal_return = exp_returns * w;
optimal_risk = sqrt(w' * cov_matrix * w);
disp(['Optimal Weights: ', num2str(w')]);
disp(['Expected Return: ', num2str(optimal_return)]);
disp(['Expected Risk: ', num2str(optimal_risk)]);% 生成不同目标收益率下的有效前沿
target_returns = linspace(min(exp_returns), max(exp_returns), 50);
risks = zeros(size(target_returns));
weights = zeros(num_assets, length(target_returns));for i = 1:length(target_returns)rt = target_returns(i);w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);weights(:, i) = w;risks(i) = sqrt(w' * cov_matrix * w);
end% 绘制有效前沿
figure;
plot(risks, target_returns, 'LineWidth', 2);
title('Efficient Frontier');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;% 等权重策略
w_eq = ones(num_assets, 1) / num_assets;
return_eq = exp_returns * w_eq;
risk_eq = sqrt(w_eq' * cov_matrix * w_eq);% 风险最小化策略
w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);
return_min_risk = exp_returns * w_min_risk;
risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);% 绘制比较图
figure;
plot(risks, target_returns, 'LineWidth', 2);
hold on;
scatter(risk_eq, return_eq, 50, 'r', 'filled');
scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');
title('Comparison of Investment Strategies');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;
四、模型验证

投资组合优化模型建立后,需要通过实际数据检验其有效性。以下是模型验证的几个方面:

  1. 回测(Backtesting)
    • 回测是通过使用历史数据检验投资策略在过去的表现,从而评估其有效性和稳定性。

    % 从历史数据中取出一部分作为回测数据backtest_returns = returns(end-12:end,:); % 假设最近一年(12个月)数据用于回测% 根据优化模型得到的权重进行回测portfolio_returns = backtest_returns * w;portfolio_cumulative_returns = cumprod(1 + portfolio_returns) - 1;% 绘制回测结果figure;plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);title('Backtesting Portfolio Cumulative Returns');xlabel('Time (months)');ylabel('Cumulative Returns');grid on;

  1. 风险评估
    • 使用夏普比率、最大回撤等指标评估投资组合的风险和收益。

    % 计算夏普比率(假设无风险利率为 0.03)risk_free_rate = 0.03 / 12; % 月利率excess_returns = portfolio_returns - risk_free_rate;sharpe_ratio = mean(excess_returns) / std(excess_returns);% 计算最大回撤cumulative_returns = cumprod(1 + portfolio_returns) - 1;drawdowns = max(max(cumulative_returns) - cumulative_returns);max_drawdown = max(drawdowns);disp(['Sharpe Ratio: ', num2str(sharpe_ratio)]);disp(['Maximum Drawdown: ', num2str(max_drawdown)]);

  1. 比较不同回测策略
    • 通过比较等权重策略、风险最小化策略等回测结果对比不同策略的优劣。

    % 根据等权重策略进行回测portfolio_returns_eq = backtest_returns * w_eq;portfolio_cumulative_returns_eq = cumprod(1 + portfolio_returns_eq) - 1;% 根据风险最小化策略进行回测portfolio_returns_min_risk = backtest_returns * w_min_risk;portfolio_cumulative_returns_min_risk = cumprod(1 + portfolio_returns_min_risk) - 1;% 绘制不同策略的回测结果比较figure;plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);hold on;plot(1:length(portfolio_cumulative_returns_eq), portfolio_cumulative_returns_eq, 'r--', 'LineWidth', 2);plot(1:length(portfolio_cumulative_returns_min_risk), portfolio_cumulative_returns_min_risk, 'g-.', 'LineWidth', 2);legend('Optimal Portfolio', 'Equal Weight Portfolio', 'Minimum Risk Portfolio', 'Location', 'Best');title('Comparison of Backtesting Cumulative Returns');xlabel('Time (months)');ylabel('Cumulative Returns');grid on;

以下表格总结了模型验证步骤及其示例:

步骤说明示例代码
回测使用历史数据检验投资策略的有效性和稳定性backtest_returns = returns(end-12:end,:); portfolio_returns = backtest_returns * w;
风险评估使用夏普比率、最大回撤等指标评估投资组合的风险和收益sharpe_ratio = mean(excess_returns) / std(excess_returns); max_drawdown = max(drawdowns);
比较不同回测策略比较等权重策略、风险最小化策略等回测结果plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b');

五、模型应用

投资组合优化模型的实际应用包括以下几个方面:

  1. 投资决策支持
    • 根据优化模型的建议,分配资金到不同资产,形成具体的投资组合策略。

    % 输出最优投资组合权重disp('Optimal Portfolio Weights:');disp(w);% 根据权重分配投资金额(假设总金额为100万元)total_investment = 1e6;investment_allocation = total_investment * w;fprintf('Investment Allocation:\n');for i = 1:num_assetsfprintf('Asset %d: %.2f\n', i, investment_allocation(i));end

  1. 资产再平衡
    • 随着市场条件的变化,定期调整投资组合,使其始终符合最优比例。

    % 设定再平衡周期(例如每季度)rebalance_period = 3; % 每3个月进行一次再平衡for t = rebalance_period:rebalance_period:length(prices)current_prices = prices(t-rebalance_period+1:t,:);current_returns = diff(log(current_prices)); % 计算最新收益率current_exp_returns = mean(current_returns);current_cov_matrix = cov(current_returns);% 使用最新数据重新进行优化w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 更新投资组合权重disp(['Rebalanced Weights at Time ', num2str(t)]);disp(w');end

  1. 风险监控
    • 持续监控投资组合的风险和波动,并根据市场变化和投资目标进行调整。

    % 每月计算投资组合的实际收益和风险for t = 1:length(prices)% 计算逐月收益率monthly_returns = mean(returns(t,:));monthly_risks = std(returns(t,:));% 输出月度收益和风险fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);% 如果风险超出预期范围,采取相应措施if monthly_risks > expected_risk_rangedisp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');endend

以下总结了模型应用的步骤及其示例:

应用场景说明示例代码
投资决策支持根据优化模型的建议,分配资金到不同资产investment_allocation = total_investment * w;
资产再平衡定期调整投资组合,使其始终符合最优比例w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, ...);
风险监控持续监控投资组合的风险和波动,并根据市场变化进行调整fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);

实例示范:投资组合优化

为了更好地理解上述方法,以下是一个完整的投资组合优化案例。

假设我们有一个投资组合,包括多个资产,其历史收益率数据存储在CSV文件assets_data.csv中。我们的目标是通过Markowitz均值-方差模型来优化投资组合,以在给定的目标收益率下最小化投资风险。

步骤 1:导入数据并计算统计量

% 读取资产收益率数据
data = readtable('assets_data.csv');
returns = data{:,:}; % 假设数据的各列为不同资产的收益率
num_assets = size(returns, 2);% 计算资产的期望收益率和协方差矩阵
exp_returns = mean(returns);
cov_matrix = cov(returns);

步骤 2:建立优化模型并求解

% 设置优化目标和约束
target_return = 0.02; % 目标收益率
Aeq = ones(1, num_assets); % 权重之和为 1
beq = 1;
lb = zeros(num_assets, 1); % 各资产权重要大于等于 0
ub = ones(num_assets, 1); % 各资产权重要小于等于 1% 使用 quadprog 求解二次规划问题
options = optimoptions('quadprog', 'Display', 'off');
w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 输出最优权重和预期收益、风险
optimal_return = exp_returns * w;
optimal_risk = sqrt(w' * cov_matrix * w);
disp(['Optimal Weights: ', num2str(w')]);
disp(['Expected Return: ', num2str(optimal_return)]);
disp(['Expected Risk: ', num2str(optimal_risk)]);

步骤 3:绘制有效前沿(Efficient Frontier)

% 生成不同目标收益率下的有效前沿
target_returns = linspace(min(exp_returns), max(exp_returns), 50);
risks = zeros(size(target_returns));
weights = zeros(num_assets, length(target_returns));for i = 1:length(target_returns)rt = target_returns(i);w = quadprog(cov_matrix, [], -exp_returns, -rt, Aeq, beq, lb, ub, [], options);weights(:, i) = w;risks[i] = sqrt(w' * cov_matrix * w);
end% 绘制有效前沿
figure;
plot(risks, target_returns, 'LineWidth', 2);
title('Efficient Frontier');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;

步骤 4:比较不同投资组合策略

% 等权重策略
w_eq = ones(num_assets, 1) / num_assets;
return_eq = exp_returns * w_eq;
risk_eq = sqrt(w_eq' * cov_matrix * w_eq);% 风险最小化策略
w_min_risk = quadprog(cov_matrix, [], [], [], Aeq, beq, lb, ub, [], options);
return_min_risk = exp_returns * w_min_risk;
risk_min_risk = sqrt(w_min_risk' * cov_matrix * w_min_risk);% 绘制比较图
figure;
plot(risks, target_returns, 'LineWidth', 2);
hold on;
scatter(risk_eq, return_eq, 50, 'r', 'filled');
scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
legend('Efficient Frontier', 'Equal Weight', 'Minimum Risk', 'Location', 'Best');
title('Comparison of Investment Strategies');
xlabel('Risk (Standard Deviation)');
ylabel('Return');
grid on;

步骤 5:回测和风险评估

% 从历史数据中取出一部分作为回测数据
backtest_returns = returns(end-12:end,:); % 假设最近一年(12个月)数据用于回测% 根据优化模型得到的权重进行回测
portfolio_returns = backtest_returns * w;
portfolio_cumulative_returns = cumprod(1 + portfolio_returns) - 1;% 绘制回测结果
figure;
plot(1:length(portfolio_cumulative_returns), portfolio_cumulative_returns, 'b', 'LineWidth', 2);
title('Backtesting Portfolio Cumulative Returns');
xlabel('Time (months)');
ylabel('Cumulative Returns');
grid on;

步骤 6:计算夏普比率和最大回撤

% 计算夏普比率(假设无风险利率为 0.03)
risk_free_rate = 0.03 / 12; % 月利率
excess_returns = portfolio_returns - risk_free_rate;
sharpe_ratio = mean(excess_returns) / std(excess_returns);% 计算最大回撤
cumulative_returns = cumprod(1 + portfolio_returns) - 1;
drawdowns = max(max(cumulative_returns) - cumulative_returns);
max_drawdown = max(drawdowns);disp(['Sharpe Ratio: ', num2str(sharpe_ratio)]);
disp(['Maximum Drawdown: ', num2str(max_drawdown)]);

步骤 7:应用模型进行投资决策支持和资产再平衡

% 输出最优投资组合权重
disp('Optimal Portfolio Weights:');
disp(w);% 根据权重分配投资金额(假设总金额为100万元)
total_investment = 1e6;
investment_allocation = total_investment * w;
fprintf('Investment Allocation:\n');
for i = 1:num_assetsfprintf('Asset %d: %.2f\n', i, investment_allocation(i));
end% 设定再平衡周期(例如每季度)
rebalance_period = 3; % 每3个月进行一次再平衡
for t = rebalance_period:rebalance_period:length(prices)current_prices_plot = prices(t-rebalance_period+1:t,:);current_returns = diff(log(current_prices_plot)); % 计算最新收益率current_exp_returns = mean(current_returns);current_cov_matrix = cov(current_returns);% 使用最新数据重新进行优化w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 更新投资组合权重disp(['Rebalanced Weights at Time ', num2str(t)]);disp(w');
end% 持续监控投资组合的风险和波动
for t = 1:length(prices)% 计算逐月收益率monthly_returns = mean(returns(t,:));monthly_risks = std(returns(t,:));% 输出月度收益和风险fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);% 如果风险超出预期范围,采取相应措施% expected_risk_range 是事先定义的风险取值区间if monthly_risks > expected_risk_rangedisp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');end
end

实例总结

通过上述步骤和实例,我们展示了如何使用Markowitz均值-方差模型进行投资组合优化的全过程,包括模型建立、代码实现、回测、风险评估和实际应用。以下是该实例的总结:

步骤说明示例代码
数据导入从CSV文件中导入资产收益率数据data = readtable('assets_data.csv'); returns = data{:,:};
模型建立建立Markowitz均值-方差模型,求解模型最优权重w = quadprog(cov_matrix, [], -exp_returns, -target_return, Aeq, beq, lb, ub, [], options);
绘制有效前沿生成不同目标收益率下的有效前沿plot(risks, target_returns, 'LineWidth', 2);
比较不同策略比较等权重策略、风险最小化策略scatter(risk_eq, return_eq, 50, 'r', 'filled'); scatter(risk_min_risk, return_min_risk, 50, 'g', 'filled');
回测使用历史数据检验投资策略的有效性和稳定性portfolio_returns = backtest_returns * w;
风险评估使用夏普比率、最大回撤等指标评估投资组合的风险和收益sharpe_ratio = mean(excess_returns) / std(excess_returns); max_drawdown = max(drawdowns);
投资决策支持根据优化模型的建议,分配资金到不同资产并进行定期再平衡investment_allocation = total_investment * w;
风险监控持续监控投资组合的风险和波动,并根据市场变化进行调整fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);

通过这些方法,我们能够构建一个优化的投资组合,在给定的目标收益率下最小化投资风险。以下是一些关键的策略和应用实例总结:

投资决策支持

  1. 计算并输出最优投资组合权重
    • 根据优化结果,分配资金到不同资产。

    % 输出最优投资组合权重disp('Optimal Portfolio Weights:');disp(w);% 根据权重分配投资金额(假设总金额为100万元)total_investment = 1e6;investment_allocation = total_investment * w;fprintf('Investment Allocation:\n');for i = 1:num_assetsfprintf('Asset %d: %.2f\n', i, investment_allocation(i));end

资产再平衡

  1. 定期调整投资组合
    • 随着市场条件的变化,定期重新优化和调整资产权重,使投资组合始终符合最优策略。

    % 设定再平衡周期(例如每季度)rebalance_period = 3; % 每3个月进行一次再平衡for t = rebalance_period:rebalance_period:length(prices)current_prices_plot = prices(t-rebalance_period+1:t,:);current_returns = diff(log(current_prices_plot)); % 计算最新收益率current_exp_returns = mean(current_returns);current_cov_matrix = cov(current_returns);% 使用最新数据重新进行优化w = quadprog(current_cov_matrix, [], -current_exp_returns, -target_return, Aeq, beq, lb, ub, [], options);% 更新投资组合权重disp(['Rebalanced Weights at Time ', num2str(t)]);disp(w');end

风险监控

  1. 持续监控投资组合的风险
    • 定期计算并输出投资组合的实际收益和风险,根据市场变化及预测及时调整策略。

    for t = 1:length(prices)% 计算逐月收益率monthly_returns = mean(returns(t,:));monthly_risks = std(returns(t,:));% 输出月度收益和风险fprintf('Month %d: Return = %.4f, Risk = %.4f\n', t, monthly_returns, monthly_risks);% 如果风险超出预期范围,采取相应措施% expected_risk_range 是事先定义的风险取值区间if monthly_risks > expected_risk_rangedisp('Risk exceeds expected range, consider rebalancing or adjusting strategy.');endend

总结

        本文详细介绍了投资组合优化的全过程,包括问题分析、模型选择、Matlab代码实现、绘制有效前沿、策略比较、回测、风险评估以及实际应用。通过实例,我们展示了如何使用Markowitz均值-方差模型优化投资组合,并利用Matlab工具进行建模和分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CVPR 2024揭幕,清华大学论文接收量霸榜,轻松碾压斯坦福、麻省理工

CVPR2024 会议之眼 快讯 会议介绍 2024 年 CVPR (Computer Vision and Pattern Recogntion Conference) 即国际计算机视觉与模式识别会议,于6月17日至21日正在美国西雅图召开。CVPR是计算机视觉和模式识别领域的顶级会议之一。与ICCV和ECCV并称为计算…

TikTok账号运营:静态住宅IP为什么可以防封?

静态住宅IP代理服务是一种提供稳定、静态IP地址并可隐藏用户真实IP地址的网络代理服务。此类代理服务通常使用高速光纤网络来提供稳定、高速的互联网体验。与动态IP代理相比,静态住宅IP代理的IP地址更稳定,被封的可能性更小,因此更受用户欢迎…

计算机网络 —— 应用层(DHCP)

计算机网络 —— 应用层(DHCP) 什么是DHCPDHCP工作过程DHCP DISCOVERDHCP OFFERDHCP RQUESTDHCP ACK DHCP租约机制中继代理工作原理功能与优势 我们今天来计网的DHCP: 什么是DHCP DHCP(Dynamic Host Configuration Protocol&…

2024年,收付通申请开通流程

大家好,今天咱们来聊聊关于APP场景中开通微信收付通的一些实用小窍门。在如今的移动互联网时代,很多商家都选择通过APP来提供服务和产品,因此如何在APP中顺利集成微信收付通功能,让用户能够轻松完成支付,就显得尤为重要…

分支结构相关

1.if 语句 结构: if 条件语句: 代码块 小练习: 使用random.randint()函数随机生成一个1~100之间的整数,判断是否是偶数 import random n random.randint(1,100) print(n) if n % 2 0:print(str(n) "是偶数") 2.else语…

Vue中使用ElementUI组件Form组件的校验validate

先准备一些el-form元素 这里面el-form中:model(v-bind:model)是单项绑定的,如果你写成了v-model""可能会出现校验没有效果的情况。 这是校验过后的结果了 现在开始使用下吧! 1.在el-form中绑定一个ref,名字自拟,后续触发检验结果…

QT-QPainter实现一个动态充电的电池

1、效果 2、核心代码 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer>

php反序列化的一些知识

问题 <?php $raw O:1:"A":1:{s:1:"a";s:1:"b";}; echo serialize(unserialize($raw)); //O:1:"A":1:{s:1:"a";s:1:"b";}?> php反序列化的时按理说找不到A这个类&#xff0c;但是他没有报错&#xff0c;…

SpringBoot复习

第一章 SpringBoot开发入门 1.Springboot的优点。 ① 可快速构建独立的Spring应用。 ② 直接嵌入Tomcat、Jetty和Undertow服务器&#xff08;无须部署WAR文件&#xff09; ③ 通过依赖启动器简化构建配置 ④ 自动化配置Spring和第三方库 ⑤ 提供生产就绪功能 ⑥ 极少的代码生成…

HJY-91A/8J电压继电器10-242VAC 辅助电源220VDC 约瑟JOSEF

系列型号 HJY-E1A/4D数字式交流电压继电器&#xff1b;HJY-E1A/4J数字式交流电压继电器&#xff1b; HJY-E1B/4D数字式交流电压继电器&#xff1b;HJY-E1B/4J数字式交流电压继电器&#xff1b; HJY-E2A/4D数字式交流电压继电器&#xff1b;HJY-E2A/4J数字式交流电压继电器&…

【Android面试八股文】你刚刚提到了V2签名使用美团的Walle实现多渠道打包,那么你能讲一讲Android 签名的 v1、v2、v3、v4版本的区别吗?

文章目录 前言一、简介二、APK 签名方案 v1 (JAR签名)2.1. 签名过程2.2 验证过程2.3 详细例子2.4 优缺点2.5 美团基于V1版本的多渠道打包方案三、APK 签名方案 v23.1 为什么要设计APK 签名方案 v2 ?3.2 APK 签名方案 v2 : 签名前和签名后的 APK3.2.1 签名前和签名后的 APK3.2…

[17] 使用Opencv_CUDA 进行滤波操作

使用Opencv_CUDA 进行滤波操作 邻域处理操作 > 滤波操作&#xff0c;拒绝或者允许某特定频段通过如果图像某处的灰度级变化缓慢&#xff0c;那么就是低频区域&#xff0c;如果灰度级变化剧烈&#xff0c;就是高频区域邻域滤波即卷积操作形态学处理&#xff1a;膨胀&#xf…

全网最全postman接口测试教程和项目实战~从入门到精通

Postman实现接口测试内容大纲一览&#xff1a; 一、什么是接口&#xff1f;为什么需要接口&#xff1f; 接口指的是实体或者软件提供给外界的一种服务。 因为接口能使我们的实体或者软件的内部数据能够被外部进行修改。从而使得内部和外部实现数据交互。所以需要接口。 比如&…

Spring Boot -- 图书管理系统(登录、展示+翻页、添加/修改图书)

文章目录 一、应用分层二、数据库的设计三、登录功能四、展示列表&#xff08;使用虚构的数据&#xff09;五、翻页 展示功能六、添加图书七、修改图书 一、应用分层 为什么我们需要应用分层&#xff1a;当代码量很多时&#xff0c;将其全部放在一起查找起来就会很麻烦&#…

Docker 可用镜像源

当使用 docker 发现拉取不到镜像时&#xff0c;可以编辑 /etc/docker/daemon.json 文件&#xff0c;添加如下内容&#xff1a; 这文章不涉及政治&#xff0c;不涉及敏感信息&#xff0c;三番五次的审核不通过&#xff0c;一删再删&#xff0c;只好换图片了。 重新加载服务配置…

Zookeeper基础教程

Zookeeper基础教程 资料来源&#xff1a;Zookeeper Tutorial (tutorialspoint.com) zookeeper就是Hadoop生态动物园的管理员 1. Zookeeper-概述 ZooKeeper是一种分布式协调服务&#xff0c;用于管理大型主机集群(large set of hosts)。在分布式环境中协调和管理服务是一个复…

解决navicat连接oracle19c数据库缺少oci.dll

下载oci.dll文件 搜索Oracle Instant Client Downloads Oracle Instant Client Downloads点击 Oracle Instant Client Downloads 超链接 根据自己的操作系统按需选择 以windows64位为例&#xff0c;下载 Version 19.23.0.0.0的OCI压缩包 解压到Navicat的安装根路径下&#xff…

Qt creator day1 练习

自由发挥登录窗口的应用场景&#xff0c;实现一个登录窗口界面&#xff0c;要求&#xff1a;第行代码都有注释 #include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {this->setWindowTitle("贪玩蓝月——是兄弟就来砍我 登入&#…

两个src案例分享

案例一 文前废话:某天正在刷着**社区的帖子,欣赏着漂亮的小姐姐,突然间评论区的一条评论引起了我的注意,类似于下面这样 这种评论在html标签中代码格式是<a>这是文字</a>这样的 同时评论区XSS漏洞的高发区,想着可能会有操作点 一、发布一个标题有js语句的贴子 二…

接口联调测试工作总结

接口联调测试工作已经告一段落&#xff0c;现在总结如下: 1、首先接口联调测试的价值 2、接口联调要有工作思路 3、接口联调工作准备 4、接口联调测试数据设计 5、接口联调脚本研发 6、脚本联调测试 测试业务本身需要接口联调调用 独立接口正确&#xff0c;但有可能接口…