▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 算法】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍

  • 1、视频 + 学堂在线 习题
  • 2、过 电子书 补充 【下载: 本章 PDF 电子书 GitHub】 [又看了一遍视频。原来第一次跳过了好多内容。。。]
  • 3、总体 MOOC 过一遍 习题

学堂在线 课程页面链接
中国大学MOOC 课程页面链接
B 站 视频链接

PPT和书籍下载网址: 【GitHub 链接】


在这里插入图片描述

总述:

开始介绍第一个可以找到最优策略的算法。 ——> 动态规划算法

介绍 3 种 迭代算法:
1、值迭代算法: 上一章讨论的求解 Bellman 最优方程的压缩映射定理 所提出的算法。
2、策略迭代算法
3、截断策略迭代算法: 值迭代 和 策略迭代 算法是该算法的极端情况。

动态规划 算法,需要系统模型。
本章介绍的策略迭代算法 扩展得到 第 5 章介绍的蒙特卡洛算法。
——————————————
model-based 算法

值迭代 上一章 的延伸
策略迭代 下一章 蒙特卡洛学习的基础

在这里插入图片描述

值迭代 和 策略迭代 是 截断策略迭代 的两个极端情况

4.1 值迭代

贝尔曼最优公式 的 矩阵向量形式:

v = f ( v ) = max ⁡ π ( r π + γ P π v ) \bm v=f(\bm v) =\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}) v=f(v)=πmax(rπ+γPπv)

求解方法: 上一章 的 压缩映射定理 建议的迭代算法 【值迭代】

v k + 1 = f ( v k ) = max ⁡ π ( r π + γ P π v k ) , k = 1 , 2 , 3... {\bm v}_{k+1} = f({\bm v}_k)=\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k), ~~~k=1, 2, 3... vk+1=f(vk)=πmax(rπ+γPπvk),   k=1,2,3...

其中 v 0 {\bm v}_0 v0 可为任意值。

两步:
1、策略 更新 (policy update)

  • v k {\bm v}_k vk 给定, 求解 π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v k ) \pi_{k+1} = \arg \max\limits_{\pi}({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k) πk+1=argπmax(rπ+γPπvk)

2、值 更新 (value update)

  • 上一步得到的策略 π k + 1 \pi_{k+1} πk+1, 更新 v k + 1 = r π k + 1 + γ P π k + 1 v k {\bm v}_{k +1}={\bm r}_{\pi_{k+1}}+\gamma {\bm P}_{\pi_{k+1}}{\bm v}_k vk+1=rπk+1+γPπk+1vk

在这里插入图片描述

v k v_k vk 是否是一个状态值?
答案是否定的。虽然 v k v_k vk 最终收敛于最优状态值,但不能保证满足任何策略的 Bellman方程。例如,它一般不满足 v k = r π k + γ P π k v k v_k=r_{\pi_k}+\gamma P_{\pi_k}v_k vk=rπk+γPπkvk v k = r π k + 1 + γ P π k + 1 v k v_k=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_k vk=rπk+1+γPπk+1vk。它只是算法生成的一个中间值。另外,由于 v k v_k vk 不是状态值,所以 q k q_k qk 不是动作值。

编程实现 需要知道 更具体的形式 elementwise form
更新策略 更具体的形式为:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) ⏟ q k ( s , a ) , s ∈ S \pi_{k+1}(s) = \arg \max\limits_{\pi}\sum_a\pi(a|s)\underbrace{\Big(\sum_rp(r|s, a)r+\gamma \sum_{s^{\prime}}p(s^{\prime}|s, a)v_k(s^{\prime})\Big)}_{q_k(s, a)},s \in S πk+1(s)=argπmaxaπ(as)qk(s,a) (rp(rs,a)r+γsp(ss,a)vk(s)),sS

根据上一章的分析,上述优化问题的最优策略解为:
π k + 1 ( a ∣ s ) = { 1 a = a k ∗ ( s ) 0 a ≠ a k ∗ ( s ) \pi_{k+1}(a|s)=\begin{cases}1\quad a=a_k^*(s) \\ 0\quad a\neq a_k^*(s) \end{cases} πk+1(as)={1a=ak(s)0a=ak(s)
其中 a k ∗ ( s ) = arg ⁡ max ⁡ a q k ( a , s ) a_k^*(s)=\arg\max\limits_aq_k(a, s) ak(s)=argamaxqk(a,s)

  • 如果 a k ∗ ( s ) = arg ⁡ max ⁡ a q k ( a , s ) a_k^*(s)=\arg\max\limits_aq_k(a, s) ak(s)=argamaxqk(a,s) 有多个解,我们可以选择任意一个解而不影响算法的收敛性。 只是若是没选中最优策略该选的动作,需要多迭代几次后才能获得最终的最优策略

贪心策略 π k + 1 \pi_{k+1} πk+1:贪心地选择 q k ( a , s ) q_k(a, s) qk(a,s) 最大的 action ~~~     确定的策略
————————————
更新值 更具体的形式为:
v k + 1 ( s ) = ∑ a π k + 1 ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) ⏟ q k ( s , a ) , s ∈ S = max ⁡ a q k ( a , s ) \begin{align*}v_{k +1}(s)&=\sum_a\pi_{k+1}(a|s)\underbrace{\Big(\sum_rp(r|s, a)r+\gamma \sum_{s^{\prime}}p(s^{\prime}|s, a)v_k(s^{\prime})\Big)}_{q_k(s, a)},s \in S\\ &=\max_aq_k(a, s)\end{align*} vk+1(s)=aπk+1(as)qk(s,a) (rp(rs,a)r+γsp(ss,a)vk(s)),sS=amaxqk(a,s)

迭代流程

v k ( s ) → q k ( s , a ) → v_k(s)\to q_k(s, a)\to vk(s)qk(s,a) 贪心策略 π k + 1 ( a ∣ s ) → ~\pi_{k+1}(a|s)\to  πk+1(as) 新的值 v k + 1 = max ⁡ a q k ( s , a ) ~v_{k+1}=\max\limits_{a}q_k(s, a)  vk+1=amaxqk(s,a)

伪代码: 值迭代算法
目标: 搜索 求解 贝尔曼最优公式的 最优状态值 和 最优策略。

在这里插入图片描述

遍历 每个状态 中的 每个动作, 计算 q k q_k qk

  • 策略 更新: 选择 q k q_k qk 最大的 action
  • 值 更新: 将 v k + 1 ( s ) v_{k+1}(s) vk+1(s) 更新为 计算得到的最大 q k q_k qk

4.1.2 例子

在这里插入图片描述

对 每个状态 的 每个动作 ,初始化 q q q 值表

在这里插入图片描述

在这里插入图片描述
按照这里
策略更新 是将 每个状态 的 q q q 值最大的动作 的选取概率 π ( a ∣ s ) \pi(a|s) π(as) 置为 1。 ~~~    等效于 让策略在这一步 做这个 q q q 值最大的动作
值更新 是将 每个状态 的 值更新为 相应状态的最大 q q q 值。

v 0 v_0 v0 可以任意选取,这里选择为 0。 不同的初值选取对迭代过程影响多大?如何根据具体情况选取合适的初值?
——> 比较直觉的是若是初始值选得离最优状态值较远, 需要的迭代次数会多些。

对于 状态 s 1 s_1 s1,动作 a 3 a_3 a3 a 5 a_5 a5 对应的 q q q 都是最大的, 这里直接选了 a 5 a_5 a5, 有没有可能在这里选 a 3 a_3 a3 得到的才是最优策略呢?
——> 确实有可能, 所以要多次迭代,收敛后迭代结束获得的就是 最优策略。

在这里插入图片描述

第一次 迭代, s1 没有达到 最优。

在这里插入图片描述

在这里插入图片描述

这里 迭代两次 就获得了 最优策略。

其它 更复杂情况 的迭代停止条件为:

在这里插入图片描述

迭代停止 则认为 获得了 最优策略。

4.2 策略迭代

主要内容: 是什么?——> 性质 ——> 如何 编程实现

任意给定的初始策略 π 0 \pi_0 π0

两步:
1、策略 评估 (policy evaluation, PE)

  • 计算 π k \pi_k πk 的状态值: v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k}~~~~~~~ vπk=rπk+γPπkvπk       求解 贝尔曼方程

策略评估做的事:通过计算相应的 状态值 来评估给定策略。

2、策略 优化 (policy improvement,PI)

  • π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

迭代流程

π 0 → P E v π 0 → P I π 1 → P E v π 1 → P I π 2 → P E v π 2 → P I . . . \pi_0\xrightarrow{PE}v_{\pi_0}\xrightarrow{PI}\pi_1\xrightarrow{PE}v_{\pi_1}\xrightarrow{PI}\pi_2\xrightarrow{PE}v_{\pi_2}\xrightarrow{PI}... π0PE vπ0PI π1PE vπ1PI π2PE vπ2PI ...

PE: 策略 评估
PI:策略 优化

现在处理以下几个问题:

Q1:在策略评估步骤中,如何通过求解 Bellman 方程得到状态值?
Q2:在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk?
Q3:为什么这样的迭代算法最终可以达到最优策略?
Q4:这个策略迭代算法和之前的值迭代算法是什么关系?

Q1:在策略评估步骤中,如何通过求解 Bellman 方程得到状态值?

如何 获取 v π k v_{\pi_k} vπk

已知: v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k} vπk=rπk+γPπkvπk

方法一: 矩阵求逆

v π k = ( I − γ P π k ) − 1 r π k {\bm v}_{\pi_k}=({\bm I}-\gamma {\bm P}_{\pi_k})^{-1}{\bm r}_{\pi_k} vπk=(IγPπk)1rπk

方法二: 迭代 ✔

v π k ( j + 1 ) = r π k + γ P π k v π k ( j ) , j = 0 , 1 , 2 , . . . {\bm v}_{\pi_k}^{(j+1)}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k}^{(j)}, ~~~j=0,1,2,... vπk(j+1)=rπk+γPπkvπk(j),   j=0,1,2,...

策略迭代 是在策略评估步骤中嵌入另一个迭代算法的迭代算法!

Q2:在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk?

在这里插入图片描述

  • 证明 1: 在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk? ~~    P73-

Q3:为什么策略迭代算法最终可以找到最优策略?

由于每次迭代都会改进策略, 即

v π 0 ≤ v π 1 ≤ v π 2 ≤ ⋯ ≤ v π k ≤ ⋯ ≤ v ∗ \bm v_{\pi_0}\leq\bm v_{\pi_1}\leq\bm v_{\pi_2}\leq\cdots\leq\bm v_{\pi_k}\leq\cdots\leq\bm v^* vπ0vπ1vπ2vπkv

v π k \bm v_{\pi_k} vπk 不断减小并最终收敛。仍需证明 将收敛到 v ∗ \bm v^* v

在这里插入图片描述

定理 4.1 (策略迭代的收敛性)。策略迭代算法生成的状态值序列 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 收敛到最优状态值 v ∗ v^* v。因此,策略序列 { π k } k = 0 ∞ \{\pi_k\}_{k=0}^\infty {πk}k=0 收敛到最优策略。

  • 证明 2: 证明策略迭代会收敛到 最优策略 P75

证明的思路是证明 策略迭代算法 比 值迭代算法 收敛得更快。

如果 策略迭代 和 值迭代 从相同的初始猜测开始,由于 策略迭代 算法的收敛性,策略迭代 将比 值迭代 收敛得更快

Q4:这个策略迭代算法和之前的值迭代算法是什么关系?

值迭代 和 策略迭代 是 截断策略迭代 的两个极端, 后续将进一步说明。

——————————————————
如何 实现 策略迭代算法?

在这里插入图片描述
在这里插入图片描述

策略迭代 算法:
目标: 搜索 最优状态值 和 最优策略

在这里插入图片描述

策略迭代算法 生成的中间值是是 状态值。 因为这些值是当前策略的 Bellman 方程的解。

4.2.3 例子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一个 示例 P79
发现一个有趣的现象:接近目标的状态 的策略 先变好, 远离目标的状态的策略会后变好。

在某一个状态, 选择 greedy action 时, 严重依赖于 其它状态的策略。
若其它状态的策略是不好的, 此时虽然选一个 动作值 ( q q q) 最大的 动作, 可能意义不大;
如果 其它状态 有能够到达目标区域 的策略, 选择变到那个状态,也能到达目标区域, 得到正的 reward。

当某个状态周围 没有状态 能够到达 目标区域 的时候, 这个状态无法到达目标区域。
当周围有状态能够到达目标区域策略时, 新的策略也能到达目标区域。

1、观察策略是如何演变的,一个有趣的模式是靠近目标区域的状态比远离目标区域的状态更早找到最优策略。只有较近的状态能先找到到达目标的轨迹,较远的状态才能找到经过较近状态到达目标的轨迹
2、状态值的空间分布呈现出一种有趣的模式:靠近目标的状态具有更大的状态值。这种模式的原因是,一个 agent 从更远的状态出发,必须走很多步才能获得正的奖励。这样的奖励将严重打折扣,因此相对较小。

4.3 截断策略迭代

值迭代 算法和 策略迭代 算法是截断策略迭代算法的两种特殊情况。

策略迭代:初始策略 为 π 0 \pi_0~~ π0   【任意猜测的】

  • 策略评估 (PE): v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k} vπk=rπk+γPπkvπk
  • 策略优化 (PI): π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

值迭代:初始值 为 v 0 {\bm v}_0 v0

  • 策略更新 (PU): π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k) πk+1=argπmax(rπ+γPπvk)
  • 值更新 (VU): v k + 1 = r π k + 1 + γ P π k + 1 v k {\bm v}_{k+1}={\bm r}_{\pi_{k+1}}+\gamma {\bm P}_{\pi_{k+1}}{\bm v}_k vk+1=rπk+1+γPπk+1vk

!!每一步的等号右侧 都有的: r + γ P v {\bm r} +\gamma {\bm P} {\bm v} r+γPv

在这里插入图片描述

在这里插入图片描述

从相同的初始条件开始。
前三个步骤是相同的。
第四步就不一样了:

  • 策略迭代,求解 v π 1 = r π 1 + γ P π 1 v π 1 v_{π_1} = r_{π_1} + γP_{\pi_1}v_{\pi_1} vπ1=rπ1+γPπ1vπ1 需要一个迭代算法 ( 迭代无数次 )
  • 值迭代, v 1 = r π 1 + γ P π 1 v 0 v_1 = r_{π_1} + \gamma P_{π_1}v_0 v1=rπ1+γPπ1v0一步迭代

在这里插入图片描述

每步求解 v \bm v v 值时, 值迭代 需要一步, 策略迭代需要无穷步,迭代次数取中间值如何呢?

值迭代算法:计算一次。
策略迭代算法:计算无限次迭代。
截断策略迭代算法:计算一个有限次迭代(例如 j j j )。从 j j j ∞ \infty 的其余迭代被截断。

在这里插入图片描述

算法中的 v k v_k vk v k ( j ) v_k^{(j)} vk(j) 不是状态值,是真实状态值的近似值,因为在策略评估步骤中只执行有限次迭代。

只有当我们在 策略评估 步骤中运行无限次迭代时,才能获得真实的状态值。

截断策略迭代 会不会 结束迭代时是一个 发散的结果?

在这里插入图片描述

  • 证明。参考 电子书 PDF P83

——————————————

证明: 截断策略迭代算法 的收敛性。

因为

v π k ( j ) = r π k + γ P π k v π k ( j − 1 ) v_{\pi_k}^{(j)}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(j-1)} vπk(j)=rπk+γPπkvπk(j1)

v π k ( j + 1 ) = r π k + γ P π k v π k ( j ) v_{\pi_k}^{(j+1)}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(j)} vπk(j+1)=rπk+γPπkvπk(j)

v π k ( j + 1 ) − v π k ( j ) = γ P π k ( v π k ( j ) − v π k ( j − 1 ) ) = ⋯ = γ j P π k j ( v π k ( 1 ) − v π k ( 0 ) ) v_{\pi_k}^{(j+1)}-v_{\pi_k}^{(j)}=\gamma P_{\pi_k}(v_{\pi_k}^{(j)}-v_{\pi_k}^{(j-1)})=\cdots=\gamma^j P^j_{\pi_k}(v_{\pi_k}^{(1)}-v_{\pi_k}^{(0)}) vπk(j+1)vπk(j)=γPπk(vπk(j)vπk(j1))==γjPπkj(vπk(1)vπk(0))

v π k ( 0 ) = v π k − 1 v_{\pi_k}^{(0)}=v_{\pi_{k-1}}~~~~ vπk(0)=vπk1     上一轮迭代的结果

v π k ( 1 ) = r π k + γ P π k v π k ( 0 ) = r π k + γ P π k v π k − 1 ≥ r π k − 1 + γ P π k − 1 v π k − 1 ① = v π k − 1 = v π k ( 0 ) \begin{aligned}v_{\pi_k}^{(1)}&=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(0)}\\ &=r_{\pi_k}+\gamma P_{\pi_k}\textcolor{blue}{v_{\pi_{k-1}}}\\ &\geq r_{\pi_{\textcolor{blue}{{k-1}}}}+\gamma P_{\pi_{\textcolor{blue}{{k-1}}}}\textcolor{blue}{v_{\pi_{k-1}}}~~~~~~~~\textcolor{blue}{①}\\ &=v_{\pi_{k-1}}\\ &=v_{\pi_k}^{(0)}\end{aligned} vπk(1)=rπk+γPπkvπk(0)=rπk+γPπkvπk1rπk1+γPπk1vπk1        =vπk1=vπk(0)

v π k ( j + 1 ) ≥ v π k ( j ) v_{\pi_k}^{(j+1)}\geq v_{\pi_k}^{(j)} vπk(j+1)vπk(j)

π k = arg ⁡ max ⁡ π ( r π + γ P π v π k − 1 ) \pi_k=\arg\max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_{k-1}}) πk=argπmax(rπ+γPπvπk1)

——————————————
在这里插入图片描述
相比于策略迭代算法,截断的策略迭代算法在策略评估步骤中只需要有限次数的迭代,因此计算效率更高。与值迭代相比,截断策略迭代算法可以在策略评估步骤中多运行几次迭代,从而加快收敛速度

Pl 【策略迭代】 的收敛性证明是基于 VI 【值迭代】 的收敛性证明。由于 VI 收敛,得到 PI 收敛。

小结:

在这里插入图片描述
4.5
Q:值迭代算法一定能找到最优策略吗?
是的。值迭代正是上一章求解 Bellman 最优性方程的 压缩映射定理 所提出的算法。利用 压缩映射定理 保证了算法的收敛性。

model-based VS model-free
虽然本章介绍的算法可以找到最优策略,但由于它们需要系统模型,通常被称为动态规划算法而不是强化学习算法。
强化学习算法可以分为两类:基于模型的和免模型的。
这里,“基于模型的”并不是指系统模型的需求。相反,基于模型的强化学习使用数据来估计系统模型,并在学习过程中使用该模型。相比之下,免模型强化学习在学习过程中不涉及模型估计

——————
习题

值迭代、策略迭代、截断策略迭代

值迭代算法中间产生的值不一定对应某些策略的状态值,这些只是产生的一些中间过程的数值,没有特别的含义。

压缩映射定理给出的算法 实际是 值迭代算法。

策略迭代算法 同时获得 最优状态值 和 最优策略。 【策略评估 需要计算状态值】

补充

证明 1: 在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk? ~~    P73-

证明:
状态值 v π k + 1 v_{\pi_{k+1}} vπk+1 v π k v_{\pi_k} vπk 满足贝尔曼公式:
v π k + 1 = r π k + 1 + γ P π k + 1 v π k + 1 v_{\pi_{k+1}}=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}} vπk+1=rπk+1+γPπk+1vπk+1
v π k = r π k + γ P π k v π k v_{\pi_k}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k} vπk=rπk+γPπkvπk
由于 π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1} = \arg\max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)
r π k + 1 + γ P π k + 1 v π k + 1 ≥ r π k + γ P π k v π k r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}}\geq r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k} rπk+1+γPπk+1vπk+1rπk+γPπkvπk
v π k − v π k + 1 = ( r π k + γ P π k v π k ) − ( r π k + 1 + γ P π k + 1 v π k + 1 ) ≤ ( r π k + 1 + γ P π k + 1 v π k ) − ( r π k + 1 + γ P π k + 1 v π k + 1 ) ≤ γ P π k + 1 ( v π k − v π k + 1 ) ≤ γ 2 P π k + 1 2 ( v π k − v π k + 1 ) ≤ . . . ≤ γ n P π k + 1 n ( v π k − v π k + 1 ) ≤ lim ⁡ n → ∞ γ n P π k + 1 n ( v π k − v π k + 1 ) = 0 \begin{align*}v_{\pi_k}-v_{\pi_{k+1}}&= (r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}) - (r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})\\ &\leq(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_k}) - (r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})\\ &\leq \gamma P_{\pi_{k+1}}(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq \gamma^2 P_{\pi_{k+1}}^2(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq ...\\ &\leq \gamma^n P_{\pi_{k+1}}^n(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq \lim\limits_{n\to\infty}\gamma^n P_{\pi_{k+1}}^n(v_{\pi_k} -v_{\pi_{k+1}})\\ &=0\end{align*} vπkvπk+1=(rπk+γPπkvπk)(rπk+1+γPπk+1vπk+1)(rπk+1+γPπk+1vπk)(rπk+1+γPπk+1vπk+1)γPπk+1(vπkvπk+1)γ2Pπk+12(vπkvπk+1)...γnPπk+1n(vπkvπk+1)nlimγnPπk+1n(vπkvπk+1)=0
在这里插入图片描述

证明 2: 证明策略迭代会收敛到 最优策略 P75

在这里插入图片描述

定理 4.1 (策略迭代的收敛性)。策略迭代算法生成的状态值序列 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 收敛到最优状态值 v ∗ v^* v。因此,策略序列 { π k } k = 0 ∞ \{\pi_k\}_{k=0}^\infty {πk}k=0 收敛到最优策略。

证明的思路是证明 策略迭代算法 比 值迭代算法 收敛得更快。

——————————
证明:
为了 证明 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 的收敛性, 引入由以下式子生成的 另一个序列 { v k } k = 0 ∞ \{v_k\}_{k=0}^\infty {vk}k=0

v k + 1 = f ( v k ) = max ⁡ π ( r π + γ P π v k ) v_{k+1}=f(v_k)=\max\limits_\pi(r_\pi+\gamma P_\pi v_k) vk+1=f(vk)=πmax(rπ+γPπvk)

这个迭代算法 正是 值迭代算法,则给定任意初始值 v 0 v_0 v0, v k v_k vk 收敛到 v ∗ v^* v

k = 1 k=1 k=1, 对任意 π 0 \pi_0 π0, 有 v π 0 ≥ v 0 v_{\pi_0}\geq v_0 vπ0v0

通过 归纳法 证明 对任意 k k k, 有 v k ≤ v π k ≤ v ∗ v_k\leq v_{\pi_k}\leq v^* vkvπkv

k ≥ 0 k\geq0 k0, 假设 v π k ≥ v k v_{\pi_k}\geq v_k vπkvk

用到的一些中间式:

在这里插入图片描述
v π k + 1 ≥ v π k v_{\pi_{k+1}}\geq v_{\pi_k}~~ vπk+1vπk   【上面的 证明 1 已证。即 策略优化后的策略的状态值 比之前的大】 , P π k + 1 ≥ 0 P_{\pi_{k+1}}\geq0 Pπk+10
② 令 π k ′ = arg ⁡ max ⁡ π ( r π + γ P π v k ) {\textcolor{blue}{{\pi_k^\prime}}}=\arg \max\limits_\pi(r_\pi+\gamma P_\pi v_k) πk=argπmax(rπ+γPπvk)
π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg \max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

对于 k + 1 k + 1 k+1 有:

v π k + 1 − v k + 1 = ( r π k + 1 + γ P π k + 1 v π k + 1 ) − max ⁡ π ( r π + γ P π v k ) ≥ ( r π k + 1 + γ P π k + 1 v π k ) − max ⁡ π ( r π + γ P π v k ) ① = ( r π k + 1 + γ P π k + 1 v π k ) − ( r π k ′ + γ P π k ′ v k ) ② ≥ ( r π k ′ + γ P π k ′ v π k ) − ( r π k ′ + γ P π k ′ v k ) ③ = γ P π k ′ ( v π k − v k ) \begin{aligned}v_{\pi_{k+1}}-v_{k+1}&=(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})-\max\limits_\pi(r_\pi+\gamma P_\pi v_k)\\ &\geq(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{\textcolor{blue}{k}} })-\max\limits_\pi(r_\pi+\gamma P_\pi v_k)~~~~~~~~~~\textcolor{blue}{①}\\ &=(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_k })-(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_k)~~~~~~~~~~\textcolor{blue}{②}\\ &\geq(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_{\pi_k })-(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_k)~~~~~~~~~~\textcolor{blue}{③}\\ &=\gamma P_{\pi_k^\prime}(v_{\pi_k}-v_k)\end{aligned} vπk+1vk+1=(rπk+1+γPπk+1vπk+1)πmax(rπ+γPπvk)(rπk+1+γPπk+1vπk)πmax(rπ+γPπvk)          =(rπk+1+γPπk+1vπk)(rπk+γPπkvk)          (rπk+γPπkvπk)(rπk+γPπkvk)          =γPπk(vπkvk)

因为 v π k − v k ≥ 0 v_{\pi_k}-v_k\geq0 vπkvk0 P π k ′ P_{\pi_k^\prime} Pπk 非负。

γ P π k ′ ( v π k − v k ) ≥ 0 \gamma P_{\pi_k^\prime}(v_{\pi_k}-v_k)\geq0 γPπk(vπkvk)0

v π k + 1 − v k + 1 ≥ 0 v_{\pi_{k+1}}-v_{k+1}\geq0 vπk+1vk+10

归纳得到, 对任意 k > 0 k > 0 k>0 v k ≤ v π k ≤ v ∗ v_k\leq v_{\pi_k}\leq v^* vkvπkv
v k v_k vk 收敛到 v ∗ v^* v, 由夹逼准则可得, v π k v_{\pi_k} vπk 也收敛到 v ∗ v^* v

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30155.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

上市公司-社会责任报告、ESG报告文本(2006-2023年)

上市公司社会责任报告是企业对外公布的一份关于其社会责任实践和成果的详细文件,涵盖环境保护、社会贡献和公司治理等方面的表现。通常包含公司在减少环境影响、提升社会福祉、维护员工权益、促进社区发展以及确保透明和道德的管理实践等方面的信息和数据。有助于了…

滑动窗口练习1-长度最小的子数组

1.题目链接:209.长度最小的子数组 2.题目描述: 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条…

聊聊分布式集群的基本概念

在当前主流的分布式架构中,各种各样的集群技术几乎成了任何想要提升系统稳定性和处理能力的团队的必备技能。虽然各种中间件和系统都有让人看似眼花缭乱的集群实现方案,但其背后仍然逃不过一些核心的技术概念,我会结合几个我比较熟悉的中间件,简单聊一下我对集群的理解: …

zlib安装教程(Windows)

开源项目地址:madler/zlib: A massively spiffy yet delicately unobtrusive compression library. (github.com) 下载代码 可以选择git clone 或直接下载release包 Releases madler/zlib (github.com) git clone https://github.com/madler/zlib.git release…

被拷打已老实!面试官问我 #{} 和 ${} 的区别是什么?

引言:在使用 MyBatis 进行数据库操作时,#{} 和 ${} 的区别是面试中常见的问题,对理解如何在 MyBatis 中安全有效地处理 SQL 语句至关重要。正确使用这两种占位符不仅影响应用的安全性,还涉及到性能优化。 题目 被拷打已老实&…

2024-06-19,面试官问的问题

文章目录 1、采用minIO完成了图片存储,采用阿里云OSS服务器存储图片这两个功能面试官理解为重复,面试官又问minIO怎么同步到OSS?2、讲一下ThreadLocal?3、为什么用ThreadLocal存数据?4、redis有几种数据结构&#xff1…

零成本!无需服务器,搭建你的图床!

先给大家看看成品: 访问地址:http://cp64mba5g6h48vl4is50.app.memfiredb.cn/ 这是我花十分钟做出来的零成本,不需要服务器的图床,不需要登录,任何人都可以在上面上传图片和拿到图片链接去使用,当然这只…

【Java面试】二十一、JVM篇(中):垃圾回收相关

文章目录 1、类加载器1.1 什么是类加载器1.2 什么是双亲委派机制 2、类装载的执行过程(类的生命周期)3、对象什么时候可以被垃圾回收器处理4、JVM垃圾回收算法4.1 标记清除算法4.2 标记整理算法4.3 复制算法 5、分代收集算法5.1 MinorGC、Mixed GC、Full…

大数据的发展,带动电子商务产业链,促进了社会的进步【电商数据采集API接口推动电商项目的源动力】

最近几年计算机技术在诸多领域得到了有效的应用,同时在多方面深刻影响着我国经济水平的发展。除此之外,人民群众的日常生活水平也受大数据技术的影响。 在这其中电子商务领域也在大数据技术的支持下,得到了明显的进步。虽然电子商务领域的发…

网页钓鱼-克隆修改--劫持口令下载后门

免责声明:本文仅做技术交流与学习... 目录 1-右键另存为 2-goblin项目(不推荐) 修改goblin.yaml文件 运行exe ​编辑 3-Setoolkit (kali自带) 网页克隆---> 1-右键另存为 --不行就再定位元素进行修改. 2-goblin项目(不推荐) GitHub - xiecat/goblin: 一款适用于红蓝…

云原生安全联防联抗策略玩转微隔离

前言 随着信息技术的发展、互联网的快速普及,越来越多的信息被存储在云端,企业面临的安全问题也日益突出。在《网络安全法》、《数据安全法》等多部法律法规要求下,各行业用户纷纷设立安全部门。不管安全部门里是“一人当关”还是“三三两两…

PCB AVI品质报告采集工具

AVI设备,品质报告. 可以通过: 过滤文件名指定文件名 排除多余的日志;运行日志为增量日志,可采用增量模式;品质报告可设置采集后删除; 下载: Gitee下载 最新版本 优势: A. 开箱即用. 解压直接运行.不需额外安装. B. 批管理设备. 设备配置均在后台管理. C. 无人值守 客户端自…

lammps聚合物建模组合技巧

大家好,我是小马老师。 本文介绍聚合物结构的组合问题。 在lammps模拟中,聚合物模拟应该算是比较复杂的一种模拟,不仅建模复杂、势参数较多,而且在模拟过程中也会经常出现各种意想不到的错误。 本文主要解决聚合物建模过程中常遇到的一个问题:多成分的组合。 比如下面的结…

【仿真建模-anylogic】Port原理解析

Author:赵志乾 Date:2024-06-14 Declaration:All Right Reserved!!! 1. 类图 2. 原理解析 2.1 核心函数: Port作为各类型端口的基类,其核心方法如下 : 函数功能Port(A…

Linux磁盘格式化与重新分区

1.df -BG查看磁盘挂载情况 2.fdisk -l查看磁盘详细信息 3.sudo mkfs.ext4 /path 格式化磁盘 4.挂载格式化后磁盘 挂载成功

初见DP

线性DP 例题1 1143. 最长公共子序列 (LCS) 子序列不连续 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#x…

opencv 视频处理

概述 OpenCV 的视频模块是其核心组成部分之一,主要负责视频文件的读取、处理、分析以及视频流的捕获和输出。这一模块使得开发者能够轻松地处理来自摄像头、文件或其他视频源的视频数据,进行实时或离线的图像处理和计算机视觉任务。以下是 OpenCV 视频模…

Pentest Muse:一款专为网络安全人员设计的AI助手

关于Pentest Muse Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手,该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外,Pentest Muse甚至还能够执行命令行代码并以迭代方式…

Excel 找出最大值及其相邻的 N 个成员

某列都是数值: A1132213464215496973482396101113712491342144015151631171718114719182030212222423252419251326272738283029163012312332333233419351436463723383739384028 请找出最大值及其相邻的 10 个成员,注意越界检查,实际符合条件…

JAVA云HIS医院管理系统源码:可医保对接的云HIS运维平台源码 SaaS模式

JAVA云HIS医院管理系统源码:可医保对接的云HIS运维平台源码 SaaS模式 云HIS系统运用云计算、大数据、物联网等新兴信息技术,为医疗机构提供全面的医疗信息管理服务。该系统支持医保功能,通过与医保系统的对接,实现了医疗费用的自…