李沐:用随机梯度下降来优化人生!

大侠幸会,在下全网同名「算法金」

0 基础转 AI 上岸,多个算法赛 Top

「日更万日,让更多人享受智能乐趣」

今天我们来聊聊达叔 6 大核心算法之 —— 优化 算法。吴恩达:机器学习的六个核心算法!

梯度下降优化算法是机器学习和深度学习中最常用的优化算法之一。它通过不断调整模型参数,使得损失函数的值逐渐减小,从而使模型逐步逼近最优解

梯度下降优化算法的优点

  1. 简单易实现:梯度下降算法的基本原理简单,容易理解和实现
  2. 广泛应用:无论是线性回归、逻辑回归,还是复杂的神经网络,梯度下降算法都可以应用

梯度下降优化算法的缺点

  1. 依赖初始值:梯度下降算法的收敛速度和最终结果可能会受到初始值的影响
  2. 容易陷入局部最优:在复杂的非凸损失函数中,梯度下降算法可能会陷入局部最优解,而无法找到全局最优解

梯度下降算法的改进

为了克服上述缺点,研究人员提出了多种改进算法,如动量法、Adagrad、Adam等。这些改进算法在加速收敛、避免局部最优等方面有显著效果。我们将在后续内容中详细介绍这些改进算法

2. 应用和普遍性

  • 梯度下降法在优化神经网络中的应用和普遍性

梯度下降法在机器学习和深度学习中的重要性不可忽视。作为一种经典的优化算法,梯度下降法被广泛应用于各种模型的训练过程中,尤其是在神经网络的优化中。

梯度下降法的基本原理

梯度下降法的核心思想是通过不断调整模型参数,使得损失函数的值逐渐减小,从而使模型逐步逼近最优解。具体来说,梯度下降法通过计算损失函数相对于模型参数的梯度,然后沿着梯度的反方向更新参数,以达到最小化损失函数的目的。

神经网络中的应用

在神经网络的训练过程中,梯度下降法起到了至关重要的作用。神经网络的训练过程本质上就是一个通过梯度下降法优化损失函数的过程。具体步骤如下:

  1. 前向传播:计算当前参数下的模型输出和损失函数值
  2. 反向传播:计算损失函数相对于模型参数的梯度
  3. 参数更新:使用梯度下降法更新模型参数

这个过程会反复进行,直到损失函数的值收敛到某个最小值。

普遍性

梯度下降法不仅在神经网络中广泛应用,还被应用于其他很多机器学习模型中,比如线性回归、逻辑回归、支持向量机等。它的普遍性和适用性使得它成为机器学习领域的一个重要工具。

在实际应用中,梯度下降法的具体形式有很多,比如批梯度下降法、随机梯度下降法和小批量梯度下降法。不同形式的梯度下降法在计算效率、收敛速度和收敛稳定性上各有优劣,我们将在下一部分详细介绍这些变形形式。

3. 梯度下降法的变形形式

  • 批梯度下降法:使用整个数据集计算梯度
  • 随机梯度下降法(SGD):使用单个样本计算梯度
  • 小批量梯度下降法:使用小批量样本计算梯度

随机梯度下降法(SGD)

随机梯度下降法是一种通过每次仅使用一个样本来计算梯度的变形形式。它每次随机选择一个样本进行参数更新,这使得算法在处理大型数据集时更加高效。

优点

  • 计算效率高:每次更新只需要计算一个样本的梯度,大大减少了计算开销
  • 内存需求低:每次只需加载一个样本,节省内存

缺点

  • 收敛不稳定:由于每次更新基于单个样本,梯度估计有较大噪声,可能导致收敛过程不稳定
  • 可能震荡:在非凸损失函数中,更新方向可能来回震荡,难以到达全局最优解

公式

随机梯度下降法的更新公式如下:

用随机梯度下降来优化人生

参照李沐曾写过的一篇短文:用随机梯度下降来优化人生

李沐  |  CMU,前亚马逊首席科学家

生活中很多事,听起来复杂,其实用简单的算法就能解决,比如随机梯度下降。这算法不仅能优化机器学习模型,也能用来优化我们的人生。

确立目标

首先,人生要有目标。短期的目标也好,长期的目标也罢,总得有个方向。就像随机梯度下降有个目标函数一样,有了目标,才有了努力的意义。目标不需要一开始就完美,重要的是,有了这个目标,你就有了努力的动力。

设立宏大目标

目标不宜太简单。若目标轻易就能达到,那未免太过无聊。大目标,哪怕一时达不到,至少给你一个奋斗的方向。初期可以定些小目标,比如期末考个 80 分,但更长远的目标要宏大些,比如财富自由、创业成功。这些目标虽然看似遥远,但正是因为有了这些大目标,你才会不断进步。

持续努力

随机梯度下降的核心是简单而持续的努力。每一步,找到一个大致正确的方向,然后迈出一步。生活也是如此,每一步的努力,都是朝着目标迈进。关键在于,持续不断地迈步。哪怕步子小,只要一直走,总会离目标越来越近。

迎接变化

改变是痛苦的,但没有改变,就没有进步。生活中的每一步,都是在调整自己的方向和步伐。你可能会感到痛苦,但这是前进的必要过程。反之,过于舒适,可能意味着停滞不前。要时刻挑战自己,不断突破舒适区。

合理休息

生活中的步伐不宜太快,也不宜太慢。步伐太小,进展缓慢;步伐太大,容易疲惫。就像随机梯度下降中需要调整步长一样,生活中也需要合理的休息和调整。适时休息,可以让你更持久地前行。

广泛探索

前进的方向取决于你对世界的认识。如果你只在一个地方打转,那么目标可能过于简单,或者你陷入了舒适区。随机梯度下降中的“随机”提醒我们,要不断探索新的领域,接受挑战,尝试新的事物,这样才能找到更好的路径。

不急不躁

不必急于找到完美的方向和步伐。虽然有人进展迅速,但随机梯度下降告诉我们,前期的徘徊和探索是必要的。如果一开始就找到最优解,反而后期可能乏力。所以,不要急于求成,前期的探索是为了更好的前进。

重要的起点

起点确实重要。如果你起点较高,自然会少走很多弯路。但即便起点不高,只要持续努力,也能达到目标。不要过分在意起点,重要的是过程中的努力和调整。

坚持到底

即使起点较低,前方的道路也许更加坎坷,但只要坚持不懈,按照正确的方向前进,最终都会达到目标。遇到困难时,调整步伐,重新出发,总能找到前进的方向。

独特之路

每个人的目标和路径都是独特的。虽然大家可能有相似的目标,但每个人的经历和路径各不相同。要找到适合自己的道路,虽然每次的参数不同,但最终的目标相似。

简单为上

虽然有比随机梯度下降更复杂的算法,但面对复杂的人生目标,简单的方法往往更有效。关注当下,每次迈出小步,快速做出决定,持续前行。只要有目标,不停步,就能达到目的。

总结

生活就像随机梯度下降,不断调整方向,迈出步伐,最终达到目标。不要怕犯错,不要怕徘徊,只要坚持,总能找到前进的路。

[ 抱个拳,总个结 ]

吴恩达:机器学习的六个核心算法!

回归算法,逻辑回归,决策树算法, 神经网络,K-means,梯度下降(本文)

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵

内容仅供学习交流之用,部分素材来自网络,侵联删

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/29009.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java共享台球室无人系统支持微信小程序+微信公众号

共享台球室无人系统 🎱 创新台球体验 近年来,共享经济如火如荼,从共享单车到共享汽车,无一不改变着我们的生活方式。而如今,这一模式已经渗透到了更多领域,共享台球室便是其中之一。不同于传统的台球室&a…

从中概回购潮,看互联网的未来

王兴的饭否语录里有这样一句话:“对未来越有信心,对现在越有耐心。” 而如今的美团,已经不再掩饰对未来的坚定信心。6月11日,美团在港交所公告,计划回购不超过20亿美元的B类普通股股份。 而自从港股一季度财报季结束…

Hue Hadoop 图形化用户界面 BYD

软件简介 Hue 是运营和开发 Hadoop 应用的图形化用户界面。Hue 程序被整合到一个类似桌面的环境,以 web 程序的形式发布,对于单独的用户来说不需要额外的安装。

SBT30100VFCT-ASEMI大功率肖特基SBT30100VFCT

编辑:ll SBT30100VFCT-ASEMI大功率肖特基SBT30100VFCT 型号:SBT30100VFCT 品牌:ASEMI 封装:TO-220 最大平均正向电流(IF):30A 最大循环峰值反向电压(VRRM)&#xf…

服务器----阿里云服务器重启或关机,远程连接进不去,个人博客无法打开

问题描述 在使用阿里云免费的新加坡服务器时,发现重启或者是关机在开服务器后,就会出现远程连接不上、个人博客访问不了等问题 解决方法 进入救援模式连接主机,用户名是root,密码是自己设置的 点击访问博客查看更多内容

AcWing 1273:天才的记忆 ← ST算法求解RMQ问题

【题目来源】https://www.acwing.com/problem/content/1275/【题目描述】 从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。 在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁…

CSS选择符和可继承属性

属性选择符&#xff1a; 示例&#xff1a;a[target"_blank"] { text-decoration: none; }&#xff08;选择所有target"_blank"的<a>元素&#xff09; /* 选择所有具有class属性的h1元素 */ h1[class] { color: silver; } /* 选择所有具有hre…

配置文件-基础配置,applicationproperties.yml

黑马程序员Spring Boot2 文章目录 1、属性配置2、配置文件分类3、yaml文件4、yaml数据读取4.1 读取单个数据4.2 读取全部属性数据4.3 读取引用类型属性数据 1、属性配置 SpringBoot默认配置文件application.properties&#xff0c;通过键值对配置对应属性修改配置 修改服务器端…

浏览器必装插件推荐:最新版Simple Allow Copy,解除网页复制限制!

经常在网上找资料的朋友&#xff0c;尤其是学生党&#xff0c;总会遇到一个问题&#xff1a;很多资料网站的文字是禁止复制的。于是大家通常会使用各种文字识别软件来图文转换&#xff0c;或者直接手打。 今天这款小工具&#xff0c;可以轻松复制各种氪金网站上的任何文字&…

视频监控平台:通过网络SDK对TCL网络摄像机进行PTZ控制 的源代码介绍及分享

目录 一、视频监控平台介绍 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;视频接入能力介绍 &#xff08;三&#xff09;功能介绍 二、TCL网络摄像机 &#xff08;一&#xff09;360度全景自动旋转&#xff1a; &#xff08;二&#xff09;高清夜视和全彩…

Tustin变换,连续传递函数离散化

Tustin变换&#xff0c;连续传递函数离散化 举例 上述说明了&#xff0c;不要盲目相信ChatGPT f_vehspd 12; phase_vehspd 120; f_res f_vehspd / tan((360-phase_vehspd) * pi/(4*180) );%连续传递函数 num [1 -2*f_res f_res^2]; den [1 2*f_res f_res^2]; sys tf(num…

示例:WPF中绑定枚举到ComboBox的方式

一、目的&#xff1a;在开发过程中&#xff0c;经常会需要把枚举绑定到ComboxBox下拉列表中&#xff0c;其实方法有很多&#xff0c;这里面通过MarkupExtension扩展GetEnumSourceExtension去绑定到列表 二、实现 定义GetEnumSourceExtension类 public class GetEnumSourceExte…

Part 4.2 背包动态规划

->背包模型模板(0/1,分组&#xff0c;完全&#xff0c;多重)<- [NOIP2018 提高组] 货币系统 题目背景 NOIP2018 提高组 D1T2 题目描述 在网友的国度中共有 n n n 种不同面额的货币&#xff0c;第 i i i 种货币的面额为 a [ i ] a[i] a[i]&#xff0c;你可以假设每…

算法03 二分查找算法【C++实现】

二分查找的概念 二分查找又称为折半查找&#xff0c;主要用于查找一个有序数组中某一个数的位置。 主要思想如下&#xff1a; 在一个有序数组中&#xff0c;取数组的中间值与要查找的数进行比较&#xff1b; 若要查找的数等于中间值&#xff0c;查找成功。 二分查找的步骤 …

Node.js安装扫盲

一、Node.js安装 在官网下载node.js安装包 双击打开node-v20.14.0-x64.ms文件&#xff0c;点击运行 进入安装Node.js的对话框&#xff0c;点击Next继续 勾选复选框后点击Next继续 默认安装路径 默认配置 这里不需要勾选&#xff0c;直接点击Next 点击Install 二、Node.js验…

【安装和引入 PyTorch 包,快来收藏】

在本文介绍 PyTorch 中一些最常用的命令和设置。 一个完成的 PyTorch 工作流程。 安装和引入 PyTorch 包 最好的安装教程就是去官方网站&#xff1a;https://pytorch.org/get-started/locally/ 安装结束之后&#xff0c;直接引入整个 torch 包&#xff1a; import torch或…

SQL注入-上篇

SQL注入 注入是web安全的头号大敌。注入攻击漏洞往往是应用程序缺少对输入进行安全性检查所引起的。攻击者把一些包含攻击代码当做命令或者查询语句发送给解释器&#xff0c;这些恶意数据可以欺骗解释器&#xff0c;从而执行计划外的命令或者未授权访问数据。注入漏洞通常能sq…

MySQL约束详解:构建数据完整性基石

目录 MySQL约束1.1 约束1.1 数据类型1.2 主键约束[重要]1.3 自增约束1.4 唯一约束1.5 非空约束1.6 默认值代码演示 1.7 外键约束[了解]思维导图最后 MySQL约束 MySQL作为广泛使用的开源关系型数据库管理系统&#xff0c;其强大的数据约束功能对于维护数据的一致性和准确性至关…

4.类,方法,对象

1.1.2. 面向对象程序设计的三大特征 1.1.2.1. 封装 面向对象编程核心思想之一就是将数据和对数据的操作封装在一起&#xff0c;形成一般的概念&#xff0c;比如类的概念。 1.1.2.2. 继承 继承体现了一种先进的编程模式。子类可以继承父类的属性和方法。 1.1.2.3. 多态 多…

Day 44 Ansible自动化运维

Ansible自动化运维 几种常用运维工具比较 ​ Puppet ​ —基于 Ruby 开发,采用 C/S 架构,扩展性强,基于 SSL,远程命令执行相对较弱ruby ​ SaltStack ​ —基于 Python 开发,采用 C/S 架构,相对 puppet 更轻量级,配置语法使用 YAML,使得配置脚本更简单 ​ Ansible ​ —基于 …