图像的对比度和亮度

目标

  • 访问像素值
  • 用0来初始化矩阵
  • cv::saturate_cast
  • 像素转换
  • 提高一张图像的亮度

原理

图像处理

图像变换可以被视作两个步骤:

  • 点操纵(像素转换)
  • 相邻区域转换(以面积为基础)

像素转换

  • 在这种图像处理的转换过程中,每个输出的像素的值都取决于相对应的输入的像素的值。
  • 此类操作的示例包括亮度和对比度调整以及颜色校正和转换。

亮度和对比度的调整

  • 两种常用的点处理是带常数的乘法和加法:
    在这里插入图片描述
  • 参数α > 0 和 β 通常被叫做gainbias参数,该参数将被用来控制对比度和亮度。
  • 你可以简单地把f(x)当作原图像素,g(x)当作输出图像的像素,那么我们可以将表达式写成:
    在这里插入图片描述
    此处的i和j代表像素点的位置,i行j列

源码

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>// we're NOT "using namespace std;" here, to avoid collisions between the beta variable and std::beta in c++17
using std::cin;
using std::cout;
using std::endl;
using namespace cv;int main( int argc, char** argv )
{
// 加载图像CommandLineParser parser( argc, argv, "{@input | lena.jpg | input image}" );Mat image = imread( samples::findFile( parser.get<String>( "@input" ) ) );if( image.empty() ){cout << "Could not open or find the image!\n" << endl;cout << "Usage: " << argv[0] << " <Input image>" << endl;return -1;}// 构建一个新的与原图相同(大小和类型)的像素为零的图像Mat new_image = Mat::zeros( image.size(), image.type() );// 获取参数 α和βdouble alpha = 1.0; /*< Simple contrast control */int beta = 0; /*< Simple brightness control */cout << " Basic Linear Transforms " << endl;cout << "-------------------------" << endl;cout << "* Enter the alpha value [1.0-3.0]: "; cin >> alpha;cout << "* Enter the beta value [0-100]: "; cin >> beta;// 遍历图像,应用线性变化// 需注意一个像素点有三个通道(B,G,R or 0, 1, 2)for( int y = 0; y < image.rows; y++ ) {for( int x = 0; x < image.cols; x++ ) {for( int c = 0; c < image.channels(); c++ ) {new_image.at<Vec3b>(y,x)[c] =saturate_cast<uchar>( alpha*image.at<Vec3b>(y,x)[c] + beta );}}}imshow("Original Image", image);imshow("New Image", new_image);waitKey();return 0;
}

此外,除了使用上述的for循环来遍历图片的每一个像素点,我们还可以使用cv::Mat::convertTo来实现,只是上述代码用来更加详细的展示其应用过程。

image.convertTo(new_image, -1, alpha, beta);

α和β参数

伽马矫正是另一个用来矫正图片亮度的技术。增加或减少β值将会为每一个像素增加或减少一个固定的常量值。像素值不在[0,255]范围内的将会被饱和,超过255的被压缩到255,小于0的被压缩到0。
浅灰色为原始图像的直方图,Gimp中亮度= 80时为深灰色
浅灰色为原始图像的直方图,Gimp中亮度= 80时为深灰色。(GIMP(GNU Image Manipulation Program)是一款自由和开源的图像编辑软件,用于图像的润色、编辑和制作。)

直方图表示每个颜色级别具有该颜色级别的像素数。深色图像会有许多低颜色值的像素,因此直方图会在其左侧呈现一个峰值。当添加恒定偏差时,直方图向右移动,因为我们已经向所有像素添加了恒定偏差。

α参数将会修改色阶分布的方式。如果α小于1,色阶将被压缩,结果将是一个对比度较低的图像。
在这里插入图片描述
浅灰色为原始图像的直方图,Gimp中对比度< 0时为深灰色。

请注意,这些直方图是使用Gimp软件中的亮度-对比度工具获得的。亮度工具应该与β偏置参数相同,但对比度工具似乎与α增益不同,其中输出范围似乎以Gimp为中心(正如您可以在前面的直方图中注意到的那样)。

简单来说,β和亮度相关,但在提高亮度的同时,对比度也会降低,图像会出现轻微的模糊。α增益可以用来通过调整对比度减少这种影响,但由于过于饱和,我们也可能失去一些原来明亮区域的细节。具体两个参数的值设置成多少要看具体需求。

伽马矫正

伽马矫正可以通过使用一个从输入的值到映射的输出值的非线性转换来矫正一个图像的亮度。如下所示:
在这里插入图片描述
由于联系的非线性,对于所有的像素的影响并不相同,且受限于其的原本的值。

在这里插入图片描述
当γ<1时,原本的黑暗区域将会变得更亮,直方图会向右平移,代表亮度的提高。这种情况适用于增强图像中暗处的细节。

当γ>1时,原本的明亮区域将会变得更暗,直方图会向左平移,代表亮度的减少。这种情况适用于则增强图像中亮部的细节或整体实现较暗的色调。

通过调整γ值,可以有效地根据需求来突出不同的特征。

实际的例子 link

举一个实际的例子,来矫正一个曝光不足的图片,参数为α=1.3,β=40
请添加图片描述
尽管整体亮度得到了提高,但是你仍然可以注意到,丢失了一些信息,比如图中的云,由于过度饱和失去了相应的细节。

当我们应用伽马矫正来进行相应的图片矫正,γ=0.4
请添加图片描述
由于映射是非线性的,并且不像以前的方法那样可能存在数值饱和,因此伽马校正能够添加较少的饱和效应,也就是说伽马矫正能够保留更多的细节,无论是原图中黑暗的区域还是明亮的区域。但是具体的γ值需要在使用中去实践。

在这里插入图片描述
上图比较了三个图像的直方图(三个直方图之间的y范围不相同)。您可以注意到,大多数像素值位于原始图像直方图的下部。校正后,我们可以在255处观察到一个大的峰值,这是由于饱和度以及右边的偏移。经过伽玛校正后,直方图向右偏移,但暗区像素比亮区像素偏移更大(见伽玛曲线图)。

代码部分

伽马矫正的代码如下:

 Mat lookUpTable(1, 256, CV_8U);uchar* p = lookUpTable.ptr();for( int i = 0; i < 256; ++i)p[i] = saturate_cast<uchar>(pow(i / 255.0, gamma_) * 255.0);Mat res = img.clone();LUT(img, lookUpTable, res);

查询表被用来提高计算性能,伽马校正(LUT)的计算通常涉及到对每个像素进行幂运算,而查找表方法只需要预先计算出256个值,然后在实际处理图像时快速查找和应用这些预先计算的值,从而加快处理速度。

额外资源

  • CRT显示器上的伽玛校正和图像
  • 图形渲染中的伽马矫正
  • 数码曝光技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/28778.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle发送邮件附件的步骤?怎么配置发信?

oracle发送邮件附件的操作指南&#xff1f;Oracle邮件服务如何&#xff1f; 在Oracle数据库中&#xff0c;发送电子邮件附件是一项常见的任务&#xff0c;特别是在需要自动化通知或报表分发的情况下。AokSend将介绍如何使用Oracle数据库发送带有附件的电子邮件。以下是详细的步…

RTSP/Onvif安防监控平台EasyNVR抓包命令tcpdump使用不了,该如何解决?

安防视频监控汇聚EasyNVR智能安防视频监控平台&#xff0c;是基于RTSP/Onvif协议的安防视频平台&#xff0c;可支持将接入的视频流进行全平台、全终端分发&#xff0c;分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等格式。平台可提供的视频能力包括&#xff1a;…

LVS负载均衡集群企业级应用实战-LVS-DR(四)

目录 LVS-DR 一. 环境准备 二. 对虚拟主机操作 三. 对真实服务器操作 四. 打开网页测试 LVS-DR 一. 环境准备 三台虚拟机&#xff0c;都要在同一网段内&#xff0c;统一关闭防火墙和selinux&#xff0c;时间同步&#xff0c;配置好YUM源。系统用centos和roucky都行。 主…

2024最新版Node.js下载安装及环境配置教程(非常详细)

一、进入官网地址下载安装包 官网&#xff1a;Node.js — Run JavaScript Everywhere 其他版本下载&#xff1a;Node.js — Download Node.js (nodejs.org) 选择对应你系统的Node.js版本 二、安装程序 &#xff08;1&#xff09;下载完成后&#xff0c;双击安装包&#xf…

软考【网络管理员】100道高频考题(含知识点解析),轻松45+

2024上软考已经圆满结束了&#xff0c;距离下半年的考试也只剩下半年不到的时间。需要备考下半年软考网络管理员的小伙伴们可以抓紧开始准备了。 今天给大家整理了——软考网管100道高频考题 &#xff0c;都是核心重点&#xff0c;有PDF&#xff0c;看完一遍教材后打印出来直接…

【电子实验4】TDA2030功率放大电路

&#x1f6a9; WRITE IN FRONT &#x1f6a9; &#x1f50e; 介绍&#xff1a;"謓泽"正在路上朝着"攻城狮"方向"前进四" &#x1f50e;&#x1f3c5; 荣誉&#xff1a;2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…

GPRS抄表技术是什么?

1.GPRS抄表技术概述 GPRS(GeneralPacketRadioService)抄表是一种基于移动通信网络的远程抄表技术&#xff0c;它利用GPRS网络进行数据传输&#xff0c;实现了对水、电、气等公用事业表计的实时、远程读取。这项技术的出现&#xff0c;极大地提升了公用事业管理的效率和准确性&…

编写一个简单的Mybatis插件

1.编写一个类&#xff0c;实现Intercepter这个接口 2.完成这个类的方法&#xff0c;并通过注解Intercepts来告诉Mybatis这个插件拦截哪个类和哪个方法 3.在Mybatis的全局配置文件里注册这个插件&#xff0c;让插件生效 4.玩一个实际功能的插件

【leetcode刷题】面试经典150题 88.合并两个有序数组

leetcode刷题 面试经典150 88. 合并两个有序数组 难度&#xff1a;简单 文章目录 一、题目内容二、自己实现代码2.1 实现思路2.2 实现代码2.3 结果分析 三、 官方解法3.1 直接合并后排序3.1.1 算法实现3.1.2 代码实现3.1.3 代码分析 3.2 双指针3.2.1 算法实现3.2.2 代码实现3.2…

【安装笔记-20240616-Windows-Gpg4win 证书管理器】

安装笔记-系列文章目录 安装笔记-20240616-Windows-Gpg4win 证书管理器 文章目录 安装笔记-系列文章目录安装笔记-20240616-Windows-Gpg4win 证书管理器 前言一、软件介绍名称&#xff1a;Gpg4win主页官方介绍 二、安装步骤测试版本&#xff1a;Gpg4win 4.3.1下载链接安装界面…

网站的文章起到什么作用

1.便于用户了解产品服务 如果想要获得更多的用户访问或者转化率&#xff0c;那么网站就得需要高质量、高原创的文章&#xff0c;通过文章可以让用户更好的了解公司的产品和服务&#xff0c;用户会根据自己的需求去选择服务类型&#xff0c;从而可以给公司产生业务订单&am…

攻防演练之-网络安全工作机会大巡礼

书接上文&#xff0c;《网络安全攻防演练风云》专栏之攻防演练之-成功的钓鱼邮件溯源&#xff0c;这里。 午餐的时间到了&#xff0c;每天Nick团队的小伙伴都会到园区外的一家工作餐饭店就餐。这家餐厅是按照称重模式进行菜品选取的&#xff0c;因此种类是相对丰富的&#xff…

android studio 模拟器文件查找

android studio 模拟器文件查找 使用安卓模拟器下载文件后通常无法在系统硬盘上找到下载的文件&#xff0c;安卓 studio studio 其实提供了文件浏览工具&#xff0c;找到后可以直接使用 Android studio 打开 打开 Android studioview 菜单view > Tool Windows > Device…

直播中的美颜技术详解:视频美颜SDK的开发与应用

今天&#xff0c;笔者将深入探讨直播中的美颜技术&#xff0c;解析视频美颜SDK的开发与应用。 一、视频美颜技术概述 视频美颜技术主要通过实时处理视频流&#xff0c;对人脸进行优化和修饰&#xff0c;使直播画面更加美观。这些功能不仅提升了用户的直播体验&#xff0c;还极…

【django问题集】django.db.utils.OperationalError: (1040, ‘Too many connections‘)

一、报错内容 django.db.utils.OperationalError: (1040, Too many connections) 主要体现&#xff1a;就是请求不了后台&#xff0c;登录都登录不了。 二、代码优化 原生django配置的mysql连接是没有连接池的功能&#xff0c;会导致mysql连接创建过多导致连接数超过了mysql服…

Paragon NTFS for Mac 15软件下载及安装教程

简介&#xff1a; NTFS For Mac 15是首个支持Mac上读写NTFS外置存储设备解决方案 &#xff0c;解决mac不能读写外置让您更加简单直观的在Mac机上随意对NTFS文件修改、删除等操作。 安 装 包 获 取 地 址&#xff1a; Paragon Ntfs For Mac 15版&#xff1a; ​​https://sou…

Android出海实战:Firebase Analytics埋点

大家好&#xff0c;我是小编阿文。欢迎您关注我们&#xff0c;经常分享有关Android出海&#xff0c;iOS出海&#xff0c;App市场政策实时更新&#xff0c;互金市场投放策略&#xff0c;最新互金新闻资讯等文章&#xff0c;期待与您共航世界之海。 写在伊始 Google Analytics&…

二刷算法训练营Day30 | 回溯算法(6/6)

目录 详细布置&#xff1a; 1. 回溯总结 2. 332. 重新安排行程 3. 51. N 皇后 4. 37. 解数独 详细布置&#xff1a; 1. 回溯总结 回溯是递归的副产品&#xff0c;只要有递归就会有回溯&#xff0c;所以回溯法也经常和二叉树遍历&#xff0c;深度优先搜索混在一起&#x…

时代巨兽!深度神经网络如何改变我们的世界?

深度神经网络 1、 简介1.1 定义深度神经网络1.2 深度学习的发展历程1.3 深度神经网络的应用领域 2、深度神经网络的基本原理2.1 神经元层2.1.1 神经元2.1.2 神经元层 2.2 前向传播2.3 反向传播2.4 激活函数2.4.1、作用2.4.2、常见激活函数2.4.3、选择激活函数的考虑 2.5 损失函…

AI 有感:智能体 = 提示词工程 + 大模型算力 + 插件类工具?

回顾 继这篇文章推出&#xff1a;怎么看 AI 大模型&#xff08;LLM&#xff09;、智能体&#xff08;Agent&#xff09;、知识库、向量数据库、知识图谱&#xff0c;RAG&#xff0c;AGI 的不同形态&#xff1f; 引起了很多粉丝朋友的反响&#xff0c;随着目前各大模型的发布以…