类别朴素贝叶斯CategoricalNB和西瓜数据集

CategoricalNB

  • 1 CategoricalNB原理以及用法
  • 2 数据集
    • 2.1 西瓜数据集
    • 2.2 LabelEncoder
    • 2.3 OrdinalEncoder
  • 3 代码实现

1 CategoricalNB原理以及用法

(1)具体原理
具体原理可看:贝叶斯分类器原理
sklearn之CategoricalNB对条件概率的原理如下:
P ( x i = k ∣ y ) = N y , k + α N y + α n i P(x_i = k | y) = \frac{N_{y,k} + \alpha}{N_y + \alpha n_i} P(xi=ky)=Ny+αniNy,k+α
其中:

  • N y , k N_{y,k} Ny,k是在类别y下特征 x i x_i xi取值为k的样本数。
  • N y N_y Ny 是类别y下的总样本数。
  • α \alpha α是平滑参数,用来避免零概率,如果我们将 α \alpha α设置为1,则这个平滑叫做拉普拉斯平滑,如果 α \alpha α小于1,则我们把它叫做利德斯通平滑。
  • n i n_i ni是特征 x i x_i xi的可能取值的数量。

(2)CategoricalNB用法
之后会有详细例子,现在先看用法

class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, fit_prior=True, class_prior=None)

参数说明:

参数
说明
alphafloat, default=1.0
附加的平滑参数(Laplace/Lidstone),0是不平滑
fit_priorbool, default=True
是否学习类别先验概率。若为False,将使用统一的先验(概率相等)
class_priorarray-like of shape (n_classes,), default=None
类别的先验概率。一经指定先验概率不能随着数据而调整。

属性说明:

属性
说明
category_count_list of arrays of shape (n_features,)
为每个要素保存形状的数组(n_classes,各个要素的n_categories)。每个数组为每个类别和分类的特定特征提供遇到的样本数量。
class_count_ndarray of shape (n_classes,)
拟合期间每个类别遇到的样本数。此值由提供的样本权重加权。
class_log_prior_ndarray of shape (n_classes,)
每个类别的对数先验概率(平滑)。
classes_ndarray of shape (n_classes,)
分类器已知的类别标签
feature_log_prob_list of arrays of shape (n_features,)
为每个特征保形状的数组(n_classes,各个要素的n_categories)。每个数组提供了给定各自特征和类别的分类的经验对数概率log(p(xi|y))
n_features_int
每个样本的特征数量。

方法说明:

方法
说明
fit(X, y[, sample_weight])根据X,y拟合朴素贝叶斯分类器。
get_params([deep])获取这个估计器的参数
partial_fit(X, y[, classes, sample_weight])对一批样本进行增量拟合。
predict(X)对测试向量X进行分类
predict_log_proba(X)返回针对测试向量X的对数概率估计
predict_proba(X)返回针对测试向量X的概率估计
score(X, y[, sample_weight])返回给定测试数据和标签上的平均准确率
set_params(**params)为这个估计器设置参数

对于X矩阵和y矩阵的要求如下:

参数
说明
X{array-like, sparse matrix} of shape (n_samples, n_features)
样本的特征矩阵,其中n_samples是样本数量,n_features是特征数量。在此,假设X的每个特征都来自不同的分类分布。进一步假设每个特征的所有类别均由数字0,…,n-1表示,其中n表示给定特征的类别总数。例如,这可以在顺序编码(OrdinalEncoder)的帮助下实现。
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2 数据集

2.1 西瓜数据集

要对下述的数据集转换成特征矩阵X和标签类别y,则需要认识两种编码

色泽根蒂敲击纹理脐部触感好坏
青绿蜷缩浊响清晰凹陷硬滑好瓜
乌黑蜷缩沉闷清晰凹陷硬滑好瓜
乌黑蜷缩浊响清晰凹陷硬滑好瓜
青绿蜷缩沉闷清晰凹陷硬滑好瓜
浅白蜷缩浊响清晰凹陷硬滑好瓜
青绿稍蜷浊响清晰稍凹软粘好瓜
乌黑稍蜷浊响稍糊稍凹软粘好瓜
乌黑稍蜷浊响清晰稍凹硬滑好瓜
乌黑稍蜷沉闷稍糊稍凹硬滑坏瓜
青绿硬挺清脆清晰平坦软粘坏瓜
浅白硬挺清脆模糊平坦硬滑坏瓜
浅白蜷缩浊响模糊平坦软粘坏瓜
青绿稍蜷浊响稍糊凹陷硬滑坏瓜
浅白稍蜷沉闷稍糊凹陷硬滑坏瓜
乌黑稍蜷浊响清晰稍凹软粘坏瓜
浅白蜷缩浊响模糊平坦硬滑坏瓜
青绿蜷缩沉闷稍糊稍凹硬滑坏瓜

2.2 LabelEncoder

class sklearn.preprocessing.LabelEncoder
  • 对目标标签进行编码,其值介于0和n_classes-1之间。
  • 该转换器应用于编码目标值,即y,而不是输入X。

常用方法:

方法
说明
fit(self, y)适合标签编码器
fit_transform(self, y)适合标签编码器并返回编码的标签
get_params(self[, deep])获取此估计量的参数
inverse_transform(self, y)将标签转换回原始编码
set_params(self, **params)设置此估算器的参数
transform(self, y)将标签转换为标准化的编码

对于y矩阵的要求如下:

参数
说明
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2.3 OrdinalEncoder

class sklearn.preprocessing.OrdinalEncoder(*, categories='auto', dtype=<class 'numpy.float64'>)
  • 将分类特征编码为整数数组。
  • 该转换器的输入应为整数或字符串之类的数组,表示分类(离散)特征所采用的值。要素将转换为序数整数。这将导致每个要素的一列整数(0到n_categories-1)。

参数说明如下:

参数
说明
categories‘auto’ or a list of array-like, default=’auto’
适合标签编码器每个功能的类别(唯一值):
‘auto’:根据训练数据自动确定类别。
list:category [i]保存第i列中预期的类别。传递的类别不应将字符串和数字值混合使用,并且在使用数字值时应进行排序
使用的类别可以在category_属性中找到。
dtypenumber type, default np.float64
所需的输出dtype

常用方法有:

方法
说明
fit(X[, y])使OrdinalEncoder拟合X
get_params([deep])获取此估计量的参数
inverse_transform(X)将数据转换回原始表示形式
set_params(**params)设置此估算器的参数
transform(X)将X转换为序数代码

对X矩阵的要求如下:

参数
说明
Xarray-like, shape [n_samples, n_features]

3 代码实现

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from sklearn.naive_bayes import CategoricalNB# 第一步:创建数据集
data = {'色泽': ['青绿', '乌黑', '乌黑', '青绿', '浅白', '青绿', '乌黑', '乌黑', '乌黑', '青绿', '浅白', '浅白', '青绿', '浅白', '乌黑', '浅白', '青绿'],'根蒂': ['蜷缩', '蜷缩', '蜷缩', '蜷缩', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '稍蜷', '硬挺', '硬挺', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '蜷缩', '蜷缩'],'敲击': ['浊响', '沉闷', '浊响', '沉闷', '浊响', '浊响', '浊响', '浊响', '沉闷', '清脆', '清脆', '浊响', '浊响', '沉闷', '浊响', '浊响', '沉闷'],'纹理': ['清晰', '清晰', '清晰', '清晰', '清晰', '清晰', '稍糊', '清晰', '稍糊', '清晰', '模糊', '模糊', '稍糊', '稍糊', '清晰', '模糊', '稍糊'],'脐部': ['凹陷', '凹陷', '凹陷', '凹陷', '凹陷', '稍凹', '稍凹', '稍凹', '稍凹', '平坦', '平坦', '平坦', '凹陷', '凹陷', '稍凹', '平坦', '稍凹'],'触感': ['硬滑', '硬滑', '硬滑', '硬滑', '硬滑', '软粘', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '硬滑'],'好坏': ['好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜']
}df = pd.DataFrame(data)# 第二步:编码# 标签编码
label_encoder = LabelEncoder()
df['好坏'] = label_encoder.fit_transform(df['好坏'])# 对分类特征进行Ordinal编码
ordinal_encoder = OrdinalEncoder()
categorical_features = df.columns[:-1]  # 除最后一列“好坏”之外的所有列
df[categorical_features] = ordinal_encoder.fit_transform(df[categorical_features])# 确定特征X和标签y
X = df.drop('好坏', axis=1)
y = df['好坏']# 第三步:划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 第四步:训练模型
model = CategoricalNB()
model.fit(X_train, y_train)# 输出预测概率
probabilities = model.predict_proba(X_test)
print("Probabilities:\n", probabilities)
print('精确度:', model.score(X_test, y_test))

首先看一下X矩阵和y矩阵,如图所示:
X矩阵
X矩阵
y矩阵
y矩阵
代码准确率结果如下:
准确率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/27322.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

粉丝经济时代:微信订阅号如何助力中小企业增长

在数字化浪潮席卷全球的今天&#xff0c;微信订阅号凭借其独特的优势&#xff0c;成为了中小企业数字化出海的重要工具。作为NetFarmer&#xff0c;我们致力于帮助企业充分利用这一平台&#xff0c;推动业务发展和市场拓展。今天将深入探讨微信订阅号的概念、用途、使用方法、适…

mac安装高版本git(更新git)

问题 问题&#xff1a;新下载的idea&#xff0c;此idea的版本较高&#xff0c;但是在工作发现这个版本的git存在一定漏洞会导致一些信息泄露问题。 1.安装Homebrew 对于Mac更新git&#xff0c;最简单的就是使用brew命令。所以我们首先下载homebrew。已下载的同学忽略直接下一…

【数据结构陈越版笔记】进阶实验1-3.1:两个有序序列的中位数

我这答案做的可能不对&#xff0c;如果不对&#xff0c;欢迎大家指出错误&#xff0c;思路大部分直接写在注释中了。 进阶实验1-3.1&#xff1a;两个有序序列的中位数 已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列 A 0 , A 1 , . . . , A n −…

ES升级--05--快照生成 和备份

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 备份ES数据1.关闭集群自动均衡2.执行同步刷新3.停止集群节点的Elasticsearch服务4.修改Elasticsearch配置文件&#xff0c;开启快照功能&#xff0c;配置仓库目录为…

微信群发机器人.使用指南.

0.简介 1.介绍 微信群发机器人是用来群发微信消息的工具,通过控制电脑的键盘和鼠标操作微信app来实现群发.支持的消息类型有:文字,图片,视频,文件,小程序,位置等. 群发机器人也可以将微信联系人中的信息保存到电脑csv表格中,以供分析. 因其是通过模拟用户操作鼠标键盘来实现群…

the histogram of cross-entropy loss values 交叉熵损失值的直方图以及cross-entropy loss交叉熵损失

交叉熵损失值的直方图在机器学习和深度学习中有几个重要的作用和用途&#xff1a; 评估模型性能: 直方图可以帮助评估模型在训练数据和测试数据上的性能。通过观察损失值的分布&#xff0c;可以了解模型在不同数据集上的表现情况。例如&#xff0c;损失值分布的形状和范围可以反…

C++中extern “C“的用法

目的 extern "C"是经常用到的东西&#xff0c;面试题目也经常出现&#xff0c;然则&#xff0c;实际用时&#xff0c;还是经常遗忘&#xff0c;因此&#xff0c;深入的了解一下&#xff0c;以增强记忆。 extern "C"指令非常有用&#xff0c;因为C和C的近亲…

Android MediaMetadataRetriever获取视频宽高,Java

Android MediaMetadataRetriever获取视频宽高&#xff0c;Java public static int[] getVideoSize(Context ctx, Uri uri) {MediaMetadataRetriever retriever new MediaMetadataRetriever();int[] size {-1, -1}; //宽&#xff0c;高try {retriever.setDataSource(ctx, uri)…

双向转发检测BFD(学习笔记)

定义 双向转发检测BFD&#xff08;Bidirectional Forwarding Detection&#xff09;是一种全网统一的检测机制&#xff0c;用于快速检测、监控网络中链路或者IP路由的转发连通状况 BFD检测机制 BFD的检测机制是两个系统建立BFD会话&#xff0c;并沿它们之间的路径周期性发送B…

Java 开发实例:Spring Boot+AOP+注解+Redis防重复提交(防抖)

文章目录 1. 环境准备2. 引入依赖3. 配置Redis4. 创建防重复提交注解5. 实现AOP切面6. 创建示例Controller7. 测试8. 进一步优化8.1 自定义异常处理8.2 提升Redis的健壮性 9. 总结 &#x1f389;欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨…

King Media 8.2 中文版安装

King Media-Viral Magazine News Video是一个用于架设社交网站的php脚本&#xff0c;能让您创建一个视频、新闻和图像的新颖社交网站。 功能 支持&#xff1a;从Url、Youtube、Vimeo、Vine、Instagram、Metacafe、DailyMotion上传和分享图片通过Facebook、谷歌、雅虎、Github和…

EC20通信模块升级失败 Quectel QDLoader 9008

这里写自定义目录标题 usb驱动下载固件和升级软件下载开始升级上述过程升级失败&#xff0c;出现Quectel QDLoader 9008寻找解决方案&#xff0c;事了QPS t不行&#xff0c;最终使用这个Quectel_Customer_FW_Download_Tool软件解决下载链接&#xff1a; 所有下载驱动、固件、软…

C++数据结构02 队列及其应用

目录 队列及其特点 利用数组模拟队列的基本操作 创建队列 空队条件 元素入队 元素出队 模拟超市收银问题 队列操作 初始化 入队操作 出队操作 取出队首元素 STL模板中队列的基本使用 训练&#xff1a;约瑟夫问题 参考程序 队列及其特点 队列是一种特殊的线性表&am…

Mac如何卸载掉系统自带的预装软件吗 Mac第三方软件无法卸载是为什么 macbook系统软件怎么删除?

在使用Mac电脑时&#xff0c;有时候我们会发现系统预装的一些应用并不常用或者不符合个人需求&#xff0c;想要将它们卸载掉。然而&#xff0c;对于系统自带的软件&#xff0c;卸载并不简单&#xff0c;需要谨慎对待以免影响系统稳定性和功能正常运行。 一、Mac可以卸载掉系统自…

Android安全开发之 Provider 组件安全

Android系统中的Content Provider组件是一种用于在不同应用之间共享数据的机制。它提供了一种安全、可控的方式&#xff0c;允许应用访问其他应用的数据。然而&#xff0c;如果Provider组件的安全措施没有得到妥善实现&#xff0c;则可能会导致严重的安全漏洞&#xff0c;例如数…

比利时海外媒体宣发,发稿促进媒体通稿发布新形势-大舍传媒

引言 随着全球化的推进&#xff0c;海外媒体的影响力也日益增强。在这一背景下&#xff0c;比利时海外媒体的宣发工作成为了媒体通稿发布的新形势。大舍传媒作为一家专注于宣传推广的公司&#xff0c;一直致力于与比利时博伊克邮报&#xff08;boicpost&#xff09;合作&#…

用数据说话,效果好上一万倍,不是空口说白话的“好很多”

作为一名大数据开发者&#xff0c;我深知数据的有很大的魔力&#xff08;我这句话就没用数据&#xff0c;听上去很无力&#xff09;。数据不仅仅是数字和图表&#xff0c;它还能赋予我们强大的说服力和权威感。让我给你详细讲讲数据如何让理论插上翅膀。 目录 数据的“靠谱”…

文字悬停效果

文字悬停效果 效果展示 CSS 知识点 CSS 变量使用回顾-webkit-text-stroke 属性的运用与回顾 页面整体结构实现 <ul><li style"--clr: #e6444f"><a href"#" class"text">First</a></li><li style"--cl…

如何看待有企业使用AI写代码,6个月研发提效超20%,未来AI对程序员会有多大影响?

AIGC对程序员来说&#xff0c;有远虑&#xff0c;无近忧。 目前看来&#xff0c;AI是程序员编写代码很好的助手&#xff0c;尤其在代码补全、照样子写代码、生成注释及文档等方面效果非常好&#xff0c;还有能省去很多查api的时间。 但即便如此&#xff0c;它也仅仅能解决造轮子…