GEE训练教程——如何确定几何形状的中心点坐标和相交的坐标

简介

在GEE中,可以使用.geometry()方法来获取几何形状的中心点坐标和相交的坐标。

首先,使用.geometry()方法获取几何形状的几何信息,然后使用.centroid()方法获取几何形状的中心点坐标。示例代码如下:

// 获取几何形状的中心点坐标
var geometry = ee.Geometry.Point([1, 2]);  // 替换为你的几何形状
var center = geometry.centroid();
print('中心点坐标:', center);

要获取几何形状的相交的坐标,可以使用.intersection()方法。首先,创建一个与其他几何形状相交的几何形状,然后使用.intersection()方法获取相交的几何形状。示例代码如下:

// 获取几何形状的相交的坐标
var geometry1 = ee.Geometry.Polygon([[0, 0], [0, 2], [2, 2], [2, 0], [0, 0]]);
var geometry2 = ee.Geometry.Polygon([[1, 1], [1, 3], [3, 3], [3, 1], [1, 1]]);
var intersection = geometry1.intersection(geometry2);
print('相交的坐标:', intersection);

注意,当几何形状没有相交的部分时,intersection()方法将返回一个空的几何形状。在代码中,你可以使用.isEmpty()方法来检查几何形状是否为空。

函数

centroid(maxErrorproj)

Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.

返回几何体最高维度分量的中心点。低维组件将被忽略,因此包含两个多边形、三条线和一个点的几何体的中心点等同于仅包含两个多边形的几何体的中心点。

Arguments:

this:geometry (Geometry):

Calculates the centroid of this geometry.

maxError (ErrorMargin, default: null):

The maximum amount of error tolerated when performing any necessary reprojection.

proj (Projection, default: null):

If specified, the result will be in this projection. Otherwise it will be in WGS84.

Returns: Geometry

convexHull(maxErrorproj)

Returns the convex hull of the given geometry. The convex hull of a single point is the point itself, the convex hull of collinear points is a line, and the convex hull of everything else is a polygon. Note that a degenerate polygon with all vertices on the same line will result in a line segment.

返回给定几何体的凸壳。单个点的凸面形是点本身,相邻点的凸面形是一条直线,其他所有点的凸面形是一个多边形。需要注意的是,如果一个退化多边形的所有顶点都在同一条直线上,那么该多边形将生成一条线段。 

Arguments:

this:geometry (Geometry):

Calculates the convex hull of this geometry.

maxError (ErrorMargin, default: null):

The maximum amount of error tolerated when performing any necessary reprojection.

proj (Projection, default: null):

The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere.

Returns: Geometry

代码

var geometry = /* color: #d63000 */ee.Geometry.MultiLineString([[[-110.32626262349595, 40.55855252455285],[-110.32598903817643, 40.55829576296057]],[[-110.3258763853978, 40.558328367661794],[-110.32555452031602, 40.55858920469993]]]);
var sss = geometry.centroid({maxError:10,proj:'EPSG:4326',
})
print(sss)Map.addLayer(sss,{color:'blue'},"中心点")

原始坐标

[-110.32626262349595,40.55855252455285]

[-110.32598903817643,40.55829576296057]

坐标中心点

[-110.3261258308334,40.55842414376022]

结果

代码

由两条直线构建成的多边形

var geometry = /* color: #d63000 */ee.Geometry.MultiLineString([[[-110.32626262349595, 40.55855252455285],[-110.32598903817643, 40.55829576296057]],[[-110.3258763853978, 40.558328367661794],[-110.32555452031602, 40.55858920469993]]]);
Map.addLayer(geometry.convexHull(),{color:'black'},"ssss")

 这样我们就能获取一个多边形,根据多边形来选取出相交点的坐标。

var geometry2 = /* color: #98ff00 */ee.Geometry.MultiLineString([[[-110.32545996052656, 40.558247457554124],[-110.32496643406782, 40.55830655360604]],[[-110.3249483996024, 40.55826663228495],[-110.32513078981542, 40.558533582925165]]]);Map.addLayer(geometry2.convexHull(),{color:'black'},"ssss")

var geometry3 = /* color: #0b4a8b */ee.Geometry.LineString([[-110.32475273214976, 40.558423588568765],[-110.32454486095111, 40.55831456669189],[-110.3243276020209, 40.558460268786476]]);//这里我们可以看到一个折现绘制的三角形结果
Map.addLayer(geometry3.convexHull(),{color:'black'},"ssss")

根据坐标函数来获取具体的坐标

List (1 element)

0:List (4 elements)

0:[-110.3243276020209,40.558460268786476]

1:[-110.32475273214978,40.558423588568765]

2:[-110.32454486095111,40.55831456669189]

3:[-110.3243276020209,40.558460268786476]

线段进行边界转化

var geometry = /* color: #d63000 */ee.Geometry.MultiLineString([[[-110.32626262349595, 40.55855252455285],[-110.32598903817643, 40.55829576296057]],[[-110.3258763853978, 40.558328367661794],[-110.32555452031602, 40.55858920469993]]]);// 获取其边界多边形
Map.addLayer(geometry.bounds(),{color:'red'},"多边形")
//按照多边形转化为格网
Map.addLayer(geometry.coveringGrid('EPSG:4326'),{color:'red'},"ssss")

其他代码

第一种情况

var geometry3 = /* color: #0b4a8b */ee.Geometry.LineString([[-110.32531024334209, 40.558216243071236],[-110.32501922366397, 40.558183638315406]]);
var geometry2 = /* color: #ffc82d */ee.Geometry.LineString([[-110.32532767770068, 40.55821929976629],[-110.32513724086063, 40.558369077652515]]);var ss1 = geometry2.buffer(1)var ss2 = geometry3.buffer(1)Map.addLayer(ss1,{color:'pink'},"buffer1")
Map.addLayer(ss2,{color:'pink'},"buffer2")Map.addLayer(ss1.intersection({right:ss2,maxError:1,
//	proj:null,
}),{color:'black'},"ssss")var zhongxindian = ss1.intersection(ss2).centroid({maxError:1,proj:'EPSG:4326',
})print('zhongxindian zuobiao',zhongxindian.coordinates())
Map.addLayer(zhongxindian,{color:'red'},"zhongxindian")

第二种情况

var geometry3 = /* color: #0b4a8b */ee.Geometry.LineString([[-110.32544033049255, 40.55823152654645],[-110.32514931074797, 40.55819892179061]]);
var geometry2 = /* color: #ffc82d */ee.Geometry.LineString([[-110.32532767770068, 40.55821929976629],[-110.32513724086063, 40.558369077652515]]);var ss1 = geometry2.buffer(1)var ss2 = geometry3.buffer(1)Map.addLayer(ss1,{color:'pink'},"buffer1")
Map.addLayer(ss2,{color:'pink'},"buffer2")Map.addLayer(ss1.intersection({right:ss2,maxError:1,
//	proj:null,
}),{color:'black'},"ssss")var zhongxindian = ss1.intersection(ss2).centroid({maxError:1,proj:'EPSG:4326',
})print('zhongxindian zuobiao',zhongxindian.coordinates())
Map.addLayer(zhongxindian,{color:'red'},"zhongxindian")

第三种情况 

var geometry3 = /* color: #0b4a8b */ee.Geometry.LineString([[-110.32540210925113, 40.5583120194767],[-110.32511108915664, 40.55827941472087]]);
var geometry2 = /* color: #ffc82d */ee.Geometry.LineString([[-110.32532767770068, 40.55821929976629],[-110.32513724086063, 40.558369077652515]]);var ss1 = geometry2.buffer(1)var ss2 = geometry3.buffer(1)Map.addLayer(ss1,{color:'pink'},"buffer1")
Map.addLayer(ss2,{color:'pink'},"buffer2")Map.addLayer(ss1.intersection({right:ss2,maxError:1,
//	proj:null,
}),{color:'black'},"ssss")var zhongxindian = ss1.intersection(ss2).centroid({maxError:1,proj:'EPSG:4326',
})print('zhongxindian zuobiao',zhongxindian.coordinates())
Map.addLayer(zhongxindian,{color:'red'},"zhongxindian")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Puppeteer生成echarts图片

Puppeteer简介 Puppeteer 是一个用于控制 Headless Chrome 或 Chromium 浏览器的 Node.js 库。它提供了一个高层次的 API,能够让你以编程方式操作浏览器,从而实现自动化任务,比如生成页面截图和 PDF、抓取网页内容、自动化表单提交、UI 测试…

快速测试 Mybatis 复杂SQL,无需启动 Spring

快速测试mybatis的sql 当我们写完sql后,我们需要测试下sql是否符合预期,在填入各种参数后能否正常工作,尤其是对于复杂的sql。 一般我们测试可能是如下的代码: 由于需要启动spring,当项目较大的时候启动速度很慢,有些…

[Kubernetes] 容器运行时 Container Runtime

文章目录 1.容器运行时(Container Runtime)2.容器运行时接口3.容器运行时层级4.容器运行时比较5.强隔离容器6.K8S为何难以实现真正的多租户 1.容器运行时(Container Runtime) Container Runtime 是运行于 k8s 集群每个节点中,负责容器的整个生命周期。Docker 就目前…

Golang发送邮件如何验证身份?有哪些限制?

Golang发送邮件需要哪些库?怎么设置邮件发送的参数? 对于开发者而言,使用Golang发送邮件是一种常见需求。然而,在发送邮件的过程中,验证身份是一个至关重要的环节,它确保了邮件的可靠性和安全性。A将探讨G…

bitset用法

参考:https://blog.csdn.net/weixin_45697774/article/details/105563993 题目:https://leetcode.cn/problems/maximum-total-reward-using-operations-ii/description/ class Solution { public:int maxTotalReward(vector<int>& rewardValues) {bitset<10000…

三极管十大品牌

三极管十大品牌-三极管品牌-晶体三极管哪个品牌好-Maigoo品牌榜

【面试干货】 B 树与 B+ 树的区别

【面试干货】 B 树与 B 树的区别 1、B 树2、 B 树3、 区别与优缺点比较4、 总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在数据库系统中&#xff0c;B 树和 B 树是常见的索引结构&#xff0c;它们在存储和组织数据方面有着不同的设计…

SAS:coalescec函数和cmiss函数的应用及拓展

背景&#xff1a;CRF中收集了每个受试者3个RACE方面的信息&#xff0c;SDTM SPEC规定了RACE的生成规则为&#xff1a;若收集了多个RACE&#xff0c;RACE“MULTIPLE”&#xff0c;详细的RACE信息记录在SUPPDM中&#xff1b;若仅收集到一个RACE&#xff0c;则RACE等于RACE1-RACE3…

LabVIEW 用于 MES 系统和卡钳上位机检测

LabVIEW 确实可以用于制造执行系统&#xff08;MES&#xff09;的开发以及卡钳上位机检测。以下是详细说明&#xff1a; 使用 LabVIEW 开发 MES 系统 数据采集与处理&#xff1a;LabVIEW 擅长实时数据采集和处理&#xff0c;可以连接多种传感器和设备&#xff0c;获取生产线上…

PyTorch学习7:加载数据集

文章目录 前言一、epoch&#xff0c;batch-size和iteration二、示例1.说明2.代码示例 总结 前言 介绍PyTorch中加载数据集的相关操作。Dataset和DataLoader 一、epoch&#xff0c;batch-size和iteration epoch&#xff1a;所有训练数据完成一次前馈和反馈 batch-size&#x…

[大模型]Gemma-2B-Instruct FastApi 部署调用

环境准备 在 平台中租赁一个 3090 等 24G 显存的显卡机器&#xff0c;如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1。 接下来打开刚刚租用服务器的 JupyterLab&#xff0c;并且打开其中的终端开始环境配置、模型下载和运行演示。 pip 换源加速下载…

Android AOSP定制去掉Google搜索栏

Android AOSP定制去掉Google搜索栏 1.前言&#xff1a; ​ 最近接触了Android系统定制的需求&#xff0c;感觉非常有意思&#xff0c;之前做过Launcher和串口&#xff0c;也自己安装过虚拟机&#xff0c;不过几年没用Linux系统了有点不习惯&#xff0c;Linux命令也不熟悉&…

SpringBoot实现图片文件上传和回显的两种方式

目录 一 功能需求 二 上传本地 2.1 实现文件上传的controller层 2.2 图片访问资源映射 二 上传OSS 一 功能需求 实现图片的上传和回显功能其实在业务中是非常常见的,比如需要上传头像,或者交易平台需要上传物品的图片等等,都需要上传和回显,所以我接下来给大家介绍两种…

Java集合汇总

Java中的集合框架是Java语言的核心部分&#xff0c;提供了强大的数据结构来存储和操作对象集合。集合框架位于java.util包中&#xff0c;主要可以分为两大类&#xff1a;Collection&#xff08;单列集合&#xff09;和Map&#xff08;双列集合&#xff09;。下面是对它们的总结…

快速开始一个go程序(极简-快速入门)

一、 实验介绍 1.1 实验简介 为了能更高效地使用语言进行编码&#xff0c;Go 语言有自己的哲学和编程习惯。Go 语言的设计者们从编程效率出发设计了这门语言&#xff0c;但又不会丢掉访问底层程序结构的能力。设计者们通过一组最少的关键字、内置的方法和语法&#xff0c;最终…

直接用sql语句来查询和分析excel表,不需要导数据,提供了sql语句自动生成,不会sql也能用

用sql语句来查询excel表&#xff0c;我们需要把excel表格导入到数据库中&#xff0c;然后用数据库的管理工具写sql语句来进行查询。方法有很多&#xff0c;我们不一一描述。 今天我们要说的是直接用sql语句来查询和分析excel表。为什么有这么一个想法呢&#xff1f;程…

配置 JDK 和 Android SDK

目录 一、配置JDK 1. 安装 JDK 2. JDK 环境配置 3. JDK的配置验证 二、配置 adb 和Android SDK环境 1、下载 2、配置 Android SDK 环境 一、配置JDK 1. 安装 JDK 安装链接&#xff1a;Java Downloads | Oracle 我安装的是 .zip &#xff0c;直接在指定的文件夹下解压就…

【Pyqt6 学习笔记】DIY一个二维码解析生成小工具

文章目录 Pycharm 配置QtDesignerPyUIC基本模板 代码示例依赖包main.pyscreen_shot_module.pyuntitled.pyuntitled.ui Pycharm 配置 摘自PyQT6的从零开始在Pycharm中配置与使用——蹦跑的蜗牛 pip install PyQt6 PyQt6-toolsQtDesigner File -> Settings -> External …

自定义类型:枚举(enum)+联合体(union)

枚举联合体 一.枚举1.枚举类型的声明2.枚举类型的优点3.枚举类型的使用 二.联合体1.联合体类型的声明2.联合体的特点3.相同成员的结构体和联合体对比4.联合体大小的计算5.联合体的练习&#xff08;判断大小端&#xff09;6.联合体节省空间例题 一.枚举 1.枚举类型的声明 枚举…

大模型PEFT(二) 之 大模型LoRA指令微调学习记录

1.peft 1.1 微调方法批处理大小模式GPU显存速度 1.2 当前高效微调技术存在的一些问题 当前的高效微调技术很难在类似方法之间进行直接比较并评估它们的真实性能&#xff0c;主要的原因如下所示: 参数计算口径不一致:参数计算可以分为三类: 可训练参数的数量、微调模型与原…