环境准备
在 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
。
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。
pip 换源加速下载并安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install fastapi==0.110.2
pip install uvicorn==0.29.0
pip install requests==2.31.0
pip install modelscope==1.11.0
pip install transformers==4.40.0
pip install accelerate==0.29.3
模型下载
使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py
执行下载,模型大小为 15GB,下载模型大概需要 2 分钟。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Lucachen/gemma2b', cache_dir='/root/autodl-tmp', revision='master')
代码准备
在 /root/autodl-tmp 路径下新建 api.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import uvicorn
import json
import datetime
import torch# 设置设备参数
DEVICE = "cuda" # 使用CUDA
DEVICE_ID = "0" # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE # 组合CUDA设备信息# 清理GPU内存函数
def torch_gc():if torch.cuda.is_available(): # 检查是否可用CUDAwith torch.cuda.device(CUDA_DEVICE): # 指定CUDA设备torch.cuda.empty_cache() # 清空CUDA缓存torch.cuda.ipc_collect() # 收集CUDA内存碎片# 创建FastAPI应用
app = FastAPI()# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):global model, tokenizer, pipeline # 声明全局变量以便在函数内部使用模型和分词器json_post_raw = await request.json() # 获取POST请求的JSON数据json_post = json.dumps(json_post_raw) # 将JSON数据转换为字符串json_post_list = json.loads(json_post) # 将字符串转换为Python对象prompt = json_post_list.get('prompt') # 获取请求中的提示history = json_post_list.get('history', []) # 获取请求中的历史记录messages = [# {"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}]# 调用模型进行对话生成prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)outputs = pipeline(prompt,max_new_tokens=1024,add_special_tokens=True,do_sample=True,temperature=0.7,top_k=50,top_p=0.95)response = outputs[0]["generated_text"][len(prompt):]now = datetime.datetime.now() # 获取当前时间time = now.strftime("%Y-%m-%d %H:%M:%S") # 格式化时间为字符串# 构建响应JSONanswer = {"response": response,"status": 200,"time": time}# 构建日志信息log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'print(log) # 打印日志torch_gc() # 执行GPU内存清理return answer # 返回响应# 主函数入口
if __name__ == '__main__':# 加载预训练的分词器和模型model_name_or_path = '/root/autodl-tmp/Lucachen/gemma2b'tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16).cuda()pipeline = pipeline("text-generation",model=model_name_or_path,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda")# 启动FastAPI应用# 用6006端口可以将autodl的端口映射到本地,从而在本地使用apiuvicorn.run(app, host='0.0.0.0', port=6006, workers=1) # 在指定端口和主机上启动应用
更多chat模板参考这里:https://github.com/InternLM/xtuner/blob/main/xtuner/utils/templates.py#L8
Api 部署
在终端输入以下命令启动 api 服务:
cd /root/autodl-tmp
python api.py
加载完毕后出现如下信息说明成功。
默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:
curl -X POST "http://127.0.0.1:6006" \-H 'Content-Type: application/json' \-d '{"prompt": "你好"}'
得到的返回值如下所示:
{"response": "你好!我也很高兴见到你!有什么问题或话题想聊天吗?你好!很高兴你来了。请问您有什么问题或需要我帮助的吗?","status": 200,"time": "2024-04-20 23:11:00"
}
也可以使用 python 中的 requests 库进行调用,如下所示:
import requests
import jsondef get_completion(prompt):headers = {'Content-Type': 'application/json'}data = {"prompt": prompt}response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))return response.json()['response']if __name__ == '__main__':print(get_completion('你好'))