[大模型]Gemma-2B-Instruct FastApi 部署调用

环境准备

在 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

在这里插入图片描述

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install fastapi==0.110.2
pip install uvicorn==0.29.0
pip install requests==2.31.0
pip install modelscope==1.11.0
pip install transformers==4.40.0
pip install accelerate==0.29.3

模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载,模型大小为 15GB,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Lucachen/gemma2b', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在 /root/autodl-tmp 路径下新建 api.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import uvicorn
import json
import datetime
import torch# 设置设备参数
DEVICE = "cuda"  # 使用CUDA
DEVICE_ID = "0"  # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE  # 组合CUDA设备信息# 清理GPU内存函数
def torch_gc():if torch.cuda.is_available():  # 检查是否可用CUDAwith torch.cuda.device(CUDA_DEVICE):  # 指定CUDA设备torch.cuda.empty_cache()  # 清空CUDA缓存torch.cuda.ipc_collect()  # 收集CUDA内存碎片# 创建FastAPI应用
app = FastAPI()# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):global model, tokenizer, pipeline # 声明全局变量以便在函数内部使用模型和分词器json_post_raw = await request.json()  # 获取POST请求的JSON数据json_post = json.dumps(json_post_raw)  # 将JSON数据转换为字符串json_post_list = json.loads(json_post)  # 将字符串转换为Python对象prompt = json_post_list.get('prompt')  # 获取请求中的提示history = json_post_list.get('history', [])  # 获取请求中的历史记录messages = [# {"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}]# 调用模型进行对话生成prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)outputs = pipeline(prompt,max_new_tokens=1024,add_special_tokens=True,do_sample=True,temperature=0.7,top_k=50,top_p=0.95)response = outputs[0]["generated_text"][len(prompt):]now = datetime.datetime.now()  # 获取当前时间time = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间为字符串# 构建响应JSONanswer = {"response": response,"status": 200,"time": time}# 构建日志信息log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'print(log)  # 打印日志torch_gc()  # 执行GPU内存清理return answer  # 返回响应# 主函数入口
if __name__ == '__main__':# 加载预训练的分词器和模型model_name_or_path = '/root/autodl-tmp/Lucachen/gemma2b'tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16).cuda()pipeline = pipeline("text-generation",model=model_name_or_path,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda")# 启动FastAPI应用# 用6006端口可以将autodl的端口映射到本地,从而在本地使用apiuvicorn.run(app, host='0.0.0.0', port=6006, workers=1)  # 在指定端口和主机上启动应用

更多chat模板参考这里:https://github.com/InternLM/xtuner/blob/main/xtuner/utils/templates.py#L8

Api 部署

在终端输入以下命令启动 api 服务:

cd /root/autodl-tmp
python api.py

加载完毕后出现如下信息说明成功。

在这里插入图片描述

默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:

curl -X POST "http://127.0.0.1:6006" \-H 'Content-Type: application/json' \-d '{"prompt": "你好"}'

得到的返回值如下所示:

{"response": "你好!我也很高兴见到你!有什么问题或话题想聊天吗?你好!很高兴你来了。请问您有什么问题或需要我帮助的吗?","status": 200,"time": "2024-04-20 23:11:00"
}

也可以使用 python 中的 requests 库进行调用,如下所示:

import requests
import jsondef get_completion(prompt):headers = {'Content-Type': 'application/json'}data = {"prompt": prompt}response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))return response.json()['response']if __name__ == '__main__':print(get_completion('你好'))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android AOSP定制去掉Google搜索栏

Android AOSP定制去掉Google搜索栏 1.前言: ​ 最近接触了Android系统定制的需求,感觉非常有意思,之前做过Launcher和串口,也自己安装过虚拟机,不过几年没用Linux系统了有点不习惯,Linux命令也不熟悉&…

SpringBoot实现图片文件上传和回显的两种方式

目录 一 功能需求 二 上传本地 2.1 实现文件上传的controller层 2.2 图片访问资源映射 二 上传OSS 一 功能需求 实现图片的上传和回显功能其实在业务中是非常常见的,比如需要上传头像,或者交易平台需要上传物品的图片等等,都需要上传和回显,所以我接下来给大家介绍两种…

Android Verified Boot (AVB) 与 dm-verity 之间的关系、相同点与差异点

标签: AVB; dm-verity ;Android Android Verified Boot (AVB) 与 dm-verity 之间的关系、相同点与差异点 概述 Android Verified Boot (AVB) 和 dm-verity 是 Android 操作系统中用于确保设备启动过程和运行时数据完整性的两个重要技术。尽管它们有着不同的实现和侧重点,…

大模型-智能儿科助手

论文摘要 论文标题为“PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications”,提出了一种用于儿科应用的中文大模型助手。为了解决现有大模型在儿科应用中表现欠佳的问题,作者构建了一个高质量的数据集 Pe…

qt自适应图片

在 Qt 中,通过重写 paintEvent 方法来添加自适应背景图片的过程如下: 创建一个自定义的 QWidget 子类。重写 paintEvent 方法,在该方法中使用 QPainter 绘制背景图片。使用 QPixmap 加载图片,并调整图片的大小以适应窗口的大小。…

Spring知识点总结

1. 简介一下Spring框架。 答:Spring框架是一个开源的容器性质的轻量级框架。主要有三大特点:容器、IOC(控制反转)、AOP(面向切面编程)。 2. Spring框架有哪些优点?谈谈你的看法。 答&#xff…

window.open(“.html“,“_blank“) 执行是下载,并没有打开新窗口显示html

window.open() 方法在浏览器中打开一个新窗口或者新标签页。如果你的 .html 文件被下载而不是在新窗口中打开,那可能是因为服务器的响应头设置了 Content-Disposition: attachment,这会导致浏览器把响应的内容作为一个文件下载。 如果你有权限修改服务器…

Java集合汇总

Java中的集合框架是Java语言的核心部分,提供了强大的数据结构来存储和操作对象集合。集合框架位于java.util包中,主要可以分为两大类:Collection(单列集合)和Map(双列集合)。下面是对它们的总结…

快速开始一个go程序(极简-快速入门)

一、 实验介绍 1.1 实验简介 为了能更高效地使用语言进行编码,Go 语言有自己的哲学和编程习惯。Go 语言的设计者们从编程效率出发设计了这门语言,但又不会丢掉访问底层程序结构的能力。设计者们通过一组最少的关键字、内置的方法和语法,最终…

直接用sql语句来查询和分析excel表,不需要导数据,提供了sql语句自动生成,不会sql也能用

用sql语句来查询excel表,我们需要把excel表格导入到数据库中,然后用数据库的管理工具写sql语句来进行查询。方法有很多,我们不一一描述。 今天我们要说的是直接用sql语句来查询和分析excel表。为什么有这么一个想法呢?程…

网络安全法对个人保护的要求

概述 《网络安全法》作为我国网络安全领域的基本法,对个人信息的保护提出了明确要求,旨在构建一个安全、可靠的网络环境,保护公民、法人和其他组织的合法权益。下面就从三个角度进行解读。 个人信息收集与使用 《网络安全法》规定&#xf…

配置 JDK 和 Android SDK

目录 一、配置JDK 1. 安装 JDK 2. JDK 环境配置 3. JDK的配置验证 二、配置 adb 和Android SDK环境 1、下载 2、配置 Android SDK 环境 一、配置JDK 1. 安装 JDK 安装链接:Java Downloads | Oracle 我安装的是 .zip ,直接在指定的文件夹下解压就…

[AIGC] 图论在LeetCode算法题中的应用

图论是计算机科学中一个广泛应用的理论基础,学好图论对解决LeetCode等平台上的算法问题至关重要。本文将介绍几种基于图论的LeetCode算法题目,并提供一个基本的解决策略。 文章目录 1. 基础定义2. 示例问题3. 解决策略结论 1. 基础定义 在深入研究示例之…

【Pyqt6 学习笔记】DIY一个二维码解析生成小工具

文章目录 Pycharm 配置QtDesignerPyUIC基本模板 代码示例依赖包main.pyscreen_shot_module.pyuntitled.pyuntitled.ui Pycharm 配置 摘自PyQT6的从零开始在Pycharm中配置与使用——蹦跑的蜗牛 pip install PyQt6 PyQt6-toolsQtDesigner File -> Settings -> External …

c++【入门】请假时间计算

限制 时间限制 : 1 秒 内存限制 : 128 MB 题目 假设小明的妈妈向公司请了n天的假,那么请问小明的妈妈总共请了多少小时的假,多少分钟的假?(提示:1天有24小时,1小时有60分钟) 输入 一个整数…

等级保护与网络安全:构建信息安全的坚实防线

# 等级保护与网络安全:构建信息安全的坚实防线 引言 在数字化时代,网络安全已成为国家安全的重要组成部分。等级保护作为我国网络安全保障体系的核心,对于维护网络空间的安全稳定起到了至关重要的作用。本文将探讨等级保护与网络安全的关系&…

自定义类型:枚举(enum)+联合体(union)

枚举联合体 一.枚举1.枚举类型的声明2.枚举类型的优点3.枚举类型的使用 二.联合体1.联合体类型的声明2.联合体的特点3.相同成员的结构体和联合体对比4.联合体大小的计算5.联合体的练习(判断大小端)6.联合体节省空间例题 一.枚举 1.枚举类型的声明 枚举…

Edge浏览器双击关闭标签页,双击关闭浏览器选项卡

设置》外观》自定义浏览器,开启“使用双击关闭浏览器选项卡” 设置里面搜索“双击”,这是最快的方式 鼠标滚轮单击 或者进入“设置”-“辅助功能” 呼吁已久的功能来了!Edge浏览器双击关闭标签页功能上线新 国产浏览器大多都有双击关闭标签页…

大模型PEFT(二) 之 大模型LoRA指令微调学习记录

1.peft 1.1 微调方法批处理大小模式GPU显存速度 1.2 当前高效微调技术存在的一些问题 当前的高效微调技术很难在类似方法之间进行直接比较并评估它们的真实性能,主要的原因如下所示: 参数计算口径不一致:参数计算可以分为三类: 可训练参数的数量、微调模型与原…

python3创建虚拟环境

开发程序的时候,总是希望有一个相对干净的环境来开发和执行程序。一方面可以非常清晰的看到第三方工具的依赖性,另外一方面,为了将来部署的准确性。 这里为了开发cython程序,在debian12上使用了python的虚环境,删除和…