基于可解释性深度学习的马铃薯叶病害检测

数据集来自kaggle文章,代码较为简单。

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directoryimport os
for dirname, _, filenames in os.walk('/kaggle/input'):for filename in filenames:print(os.path.join(dirname, filename))

Neural Network Model with TensorFlow and Keras for Classification

import tensorflow as tf
from tensorflow.keras import models,layers
import matplotlib.pyplot as pltBATCH_SIZE=32
IMAGE_SIZE=224
CHANNELS=3
EPOCHS=50

Loading Image Dataset for Training

dataset=tf.keras.preprocessing.image_dataset_from_directory("/kaggle/input/potato-dataset/PlantVillage",shuffle=True,image_size=(IMAGE_SIZE,IMAGE_SIZE),batch_size=BATCH_SIZE
)

Retrieving Class Names from the Dataset

class_names=dataset.class_names
class_names

Data Visualization

import osPotato___Early_blight_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___Early_blight'
Potato___Late_blight_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___Late_blight'
Potato___healthy_dir = '/kaggle/input/potato-dataset/PlantVillage/Potato___healthy'
import matplotlib.pyplot as plt# Define the categories and corresponding counts
categories = ['Early Leaf Blight','Late Leaf Blight','Healthy']
counts = [len(os.listdir(Potato___Early_blight_dir)), len(os.listdir(Potato___Late_blight_dir)), len(os.listdir(Potato___healthy_dir))]# Create a bar plot to visualize the distribution of images
plt.figure(figsize=(12, 6))
plt.bar(categories, counts, color='skyblue')
plt.xlabel('Categories')
plt.ylabel('Number of Images')
plt.title('Distribution of Images in Different Categories')
plt.show()

Visualizing Sample Images from the Dataset

plt.figure(figsize=(10,10))
for image_batch, labels_batch in dataset.take(1):print(image_batch.shape)print(labels_batch.numpy())for i in range(12):ax=plt.subplot(3,4,i+1)plt.imshow(image_batch[i].numpy().astype("uint8"))plt.title(class_names[labels_batch[i]])plt.axis("off")

Function to Split Dataset into Training and Validation Set

def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.2, shuffle=True, shuffle_size=10000):assert(train_split+val_split)==1ds_size=len(ds)if shuffle:ds=ds.shuffle(shuffle_size, seed=12)train_size=int(train_split*ds_size)val_size=int(val_split*ds_size)train_ds=ds.take(train_size)val_ds=ds.skip(train_size).take(val_size)return train_ds, val_ds
train_ds, val_ds =get_dataset_partitions_tf(dataset)

Data Augmentation

train_ds= train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
val_ds= val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
for image_batch, labels_batch in dataset.take(1):print(image_batch[0].numpy()/255)
pip install preprocessing
resize_and_rescale = tf.keras.Sequential([layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),layers.Rescaling(1./255),
])
data_augmentation=tf.keras.Sequential([layers.RandomFlip("horizontal_and_vertical"),layers.RandomRotation(0.2),
])
n_classes=3

Our own Convolutional Neural Network (CNN) for Image Classification

input_shape=(BATCH_SIZE, IMAGE_SIZE,IMAGE_SIZE,CHANNELS)
n_classes=3model_1= models.Sequential([resize_and_rescale,data_augmentation,layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=input_shape),layers.MaxPooling2D((2,2)),layers.Conv2D(64, kernel_size=(3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(64, kernel_size=(3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Conv2D(128, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Flatten(),layers.Dense(256,activation='relu'),layers.Dense(n_classes, activation='softmax'),
])
model_1.build(input_shape=input_shape)
model_1.summary()

model_1.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy']
)
history=model_1.fit(train_ds,batch_size=BATCH_SIZE,validation_data=val_ds,verbose=1,epochs=50
)
scores=model_1.evaluate(val_ds)

Training History Metrics Extraction

acc=history.history['accuracy']
val_acc=history.history['val_accuracy']loss=history.history['loss']
val_loss=history.history['val_loss']
history.history['accuracy']

Training History Visualization

EPOCHS=50
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.plot(range(EPOCHS), acc, label='Training Accuracy')
plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(range(EPOCHS), loss, label='Training Loss')
plt.plot(range(EPOCHS), val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

Prediction of Image Labels from Validation Dataset

import numpy as np
for images_batch, labels_batch in val_ds.take(1):first_image=images_batch[0].numpy().astype("uint8")print("First image to predict")plt.imshow(first_image)print("Actual Label:",class_names[labels_batch[0].numpy()])batch_prediction = model_1.predict(images_batch)print("Predicted Label:",class_names[np.argmax(batch_prediction[0])])

def predict(model, img):img_array=tf.keras.preprocessing.image.img_to_array(images[i].numpy())img_array=tf.expand_dims(img_array,0) #create a batchpredictions=model.predict(img_array)predicted_class=class_names[np.argmax(predictions[0])]confidence=round(100*(np.max(predictions[0])),2)return predicted_class, confidence
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):for i in range(1):ax=plt.subplot(3,3,i+1)plt.imshow(images[i].numpy().astype("uint8"))predicted_class, confidence=predict(model_1, images[i].numpy())actual_class=class_names[labels[i]]plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")plt.axis("off")

plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):for i in range(9):ax=plt.subplot(3,3,i+1)plt.imshow(images[i].numpy().astype("uint8"))predicted_class, confidence=predict(model_1, images[i].numpy())actual_class=class_names[labels[i]]plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")plt.axis("off")

Saving the TensorFlow Model

from tensorflow.keras.models import save_model# Save the TensorFlow model in .h5 format# With this line
model_1.save('/kaggle/working/model_potato_50epochs_99%acc.keras')

Evaluating Model Predictions on Validation Dataset

# Initialize lists to store the results
y_true = []
y_pred = []# Iterate over the validation dataset
for images, labels in val_ds:# Get the model's predictionspredictions = model_1.predict(images)# Get the indices of the maximum values along an axis using argmaxpred_labels = np.argmax(predictions, axis=1)# Extend the 'y_true' and 'y_pred' listsy_true.extend(labels.numpy())y_pred.extend(pred_labels)# Convert lists to numpy arrays
y_true = np.array(y_true)
y_pred = np.array(y_pred)

Evaluation Metrics Calculation

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')print(f'Accuracy: {accuracy}')  # (accuracy = (TP+TN)/(TP+FP+TN+FN))
print(f'Precision: {precision}')  # (precision = TP/(TP+FP))
print(f'Recall: {recall}')  # (recall = TP/(TP+FN))
print(f'F1 Score: {f1}')  # (f1 score = 2/((1/Precision)+(1/Recall)))

Visualization of Confusion Matrix

import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt# Assuming y_true and y_pred are defined
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()

ROC Curve

from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt# Binarize the output
lb = LabelBinarizer()
lb.fit(y_true)
y_test = lb.transform(y_true)
y_pred = lb.transform(y_pred)n_classes = y_test.shape[1]# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])roc_auc[i] = auc(fpr[i], tpr[i])# Plot all ROC curves
plt.figure()
for i in range(n_classes):plt.plot(fpr[i], tpr[i],label='ROC curve of class {0} (area = {1:0.2f})'''.format(i, roc_auc[i]))plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic to Multi-Class')
plt.legend(loc="lower right")
plt.show()

AUC Score

from sklearn.metrics import roc_auc_score# Assuming y_true and y_pred are defined
# 'ovo' stands for One-vs-One
# 'macro' calculates metrics for each label, and finds their unweighted mean
auc = roc_auc_score(y_true, y_pred, multi_class='ovo', average='macro')print(f'AUC Score: {auc}')  # (AUC Score = Area Under the ROC Curve)

Saving the TensorFlow Model

from tensorflow.keras.models import save_model# Save the TensorFlow model in .h5 format# With this line
model_1.save('/kaggle/working/model_potato_50epochs_99%acc1.keras')

CNN Architecture Specification of the Base Research Paper

#Proposed Model in Research Paper
# activation units=64,128,256,512,512,4096,4096,1000
# kernel= 3,3
# max pooling =2,2
input_shape=(224,224,3)

Paper-Based CNN Model Architecture

from tensorflow.keras import Inputmodel_paper = models.Sequential([Input(shape=input_shape),resize_and_rescale,data_augmentation,# conv1layers.Conv2D(64, kernel_size=(3,3), activation='relu'),layers.MaxPooling2D((2,2)),#conv2layers.Conv2D(128, kernel_size=(3,3), activation='relu'),layers.MaxPooling2D((2,2)),#conv3layers.Conv2D(256, kernel_size=(3,3), activation='relu'),layers.MaxPooling2D((2,2)),#conv4layers.Conv2D(512, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),#conv5layers.Conv2D(512, (3,3), activation='relu'),layers.MaxPooling2D((2,2)),layers.Flatten(),layers.Dense(4096, activation='relu'),layers.Dense(4096, activation='relu'),layers.Dense(1000, activation='relu'),layers.Dense(n_classes, activation='softmax'),
])
model_paper.summary()

Compilation of the Paper-Based CNN Model

model_paper.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy']
)

Training the Paper-Based CNN Model

history_paper=model_paper.fit(train_ds,batch_size=BATCH_SIZE,validation_data=val_ds,verbose=1,epochs=50
)
scores_paper=model_paper.evaluate(val_ds)
acc=history_paper.history['accuracy']
val_acc=history_paper.history['val_accuracy']loss=history_paper.history['loss']
val_loss=history_paper.history['val_loss']
history_paper.history['accuracy']

Visualization of Training and Validation Metrics of Base Paper Model

EPOCHS=50
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.plot(range(EPOCHS), acc, label='Training Accuracy')
plt.plot(range(EPOCHS), val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(range(EPOCHS), loss, label='Training Loss')
plt.plot(range(EPOCHS), val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

Prediction of Image Label from Validation Dataset

import numpy as np
for images_batch, labels_batch in val_ds.take(1):first_image=images_batch[0].numpy().astype("uint8")print("First image to predict")plt.imshow(first_image)print("Actual Label:",class_names[labels_batch[0].numpy()])batch_prediction = model_paper.predict(images_batch)print("Predicted Label:",class_names[np.argmax(batch_prediction[0])])

def predict(model, img):img_array=tf.keras.preprocessing.image.img_to_array(images[i].numpy())img_array=tf.expand_dims(img_array,0) #create a batchpredictions=model.predict(img_array)predicted_class=class_names[np.argmax(predictions[0])]confidence=round(100*(np.max(predictions[0])),2)return predicted_class, confidence
plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):for i in range(1):ax=plt.subplot(3,3,i+1)plt.imshow(images[i].numpy().astype("uint8"))predicted_class, confidence=predict(model_paper, images[i].numpy())actual_class=class_names[labels[i]]plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")plt.axis("off")

plt.figure(figsize=(15,15))
for images, labels in val_ds.take(1):for i in range(9):ax=plt.subplot(3,3,i+1)plt.imshow(images[i].numpy().astype("uint8"))predicted_class, confidence=predict(model_paper, images[i].numpy())actual_class=class_names[labels[i]]plt.title(f"Actual: {actual_class}, \n Predicted: {predicted_class}. \n Confidence: {confidence}%")plt.axis("off")

Saving the Tensorflow model of the base paper

from tensorflow.keras.models import save_model# Save the TensorFlow model in .h5 format# With this line
model_paper.save('/kaggle/working/model_potato_basepaper.keras')
# Initialize lists to store the results
y_true = []
y_pred = []# Iterate over the validation dataset
for images, labels in val_ds:# Get the model's predictionspredictions = model_paper.predict(images)# Get the indices of the maximum values along an axis using argmaxpred_labels = np.argmax(predictions, axis=1)# Extend the 'y_true' and 'y_pred' listsy_true.extend(labels.numpy())y_pred.extend(pred_labels)# Convert lists to numpy arrays
y_true = np.array(y_true)
y_pred = np.array(y_pred)

Calculating Classification Metrics

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall_score(y_true, y_pred, average='weighted')
f1 = f1_score(y_true, y_pred, average='weighted')print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1 Score: {f1}')

The provided code segment visualizes the confusion matrix using Seaborn's heatmap function

import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt# Assuming y_true and y_pred are defined
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()

from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt# Binarize the output
lb = LabelBinarizer()
lb.fit(y_true)
y_test = lb.transform(y_true)
y_pred = lb.transform(y_pred)n_classes = y_test.shape[1]# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i])roc_auc[i] = auc(fpr[i], tpr[i])# Plot all ROC curves
plt.figure()
for i in range(n_classes):plt.plot(fpr[i], tpr[i],label='ROC curve of class {0} (area = {1:0.2f})'''.format(i, roc_auc[i]))plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic to Multi-Class')
plt.legend(loc="lower right")
plt.show()

from sklearn.metrics import roc_auc_score# Assuming y_true and y_pred are defined
# 'ovo' stands for One-vs-One
# 'macro' calculates metrics for each label, and finds their unweighted mean
auc = roc_auc_score(y_true, y_pred, multi_class='ovo', average='macro')print(f'AUC Score: {auc}')  # (AUC Score = Area Under the ROC Curve)

Using Explainable AI to explain the predictions of our own CNN model,Taking an image and predicting it's class using our own CNN Model

import numpy as np
import matplotlib.pyplot as pltfor images_batch, labels_batch in val_ds.take(1):first_image = images_batch[0].numpy().astype("uint8")print("First image to predict")plt.imshow(first_image)print("Actual Label:", class_names[labels_batch[0].numpy()])batch_prediction = model_1.predict(images_batch)top_3_pred_indices = np.argsort(batch_prediction[0])[-3:][::-1]top_3_pred_labels = [class_names[index] for index in top_3_pred_indices]top_3_pred_values = [batch_prediction[0][index] for index in top_3_pred_indices]top_3_pred_percentages = [value * 100 for value in top_3_pred_values]print("Top 3 Predicted Labels:", top_3_pred_labels)print("Top 3 Predicted Probabilities (%):", top_3_pred_percentages)# Plotting the top 3 predictionsplt.figure(figsize=(6, 3))plt.bar(top_3_pred_labels, top_3_pred_percentages)plt.title('Top 3 Predictions')plt.xlabel('Classes')plt.ylabel('Prediction Probabilities (%)')plt.show()

Model Explainability with LIME (Local Interpretable Model-Agnostic Explanations)

pip install lime

Setting up Lime for Image Explanation

%load_ext autoreload
%autoreload 2
import os,sys
try:import lime
except:sys.path.append(os.path.join('..', '..')) # add the current directoryimport lime
from lime import lime_image
explainer = lime_image.LimeImageExplainer()
%%time
# Hide color is the color for a superpixel turned OFF. Alternatively, if it is NONE, the superpixel will be replaced by the average of its pixels
explanation = explainer.explain_instance(images_batch[0].numpy().astype('double'), model_1.predict, top_labels=3, hide_color=0, num_samples=1000)
from skimage.segmentation import mark_boundaries

Superpixel for the top most Prediction

#here hide_rest is True
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=3, hide_rest=True)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

#here hide_rest is False
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Visualizing 'pros and cons'

temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=1000, hide_rest=False, min_weight=0.1)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Explaination Heatmap plot with weights

#Select the same class explained on the figures above.
ind =  explanation.top_labels[0]#Map each explanation weight to the corresponding superpixel
dict_heatmap = dict(explanation.local_exp[ind])
heatmap = np.vectorize(dict_heatmap.get)(explanation.segments)#Plot. The visualization makes more sense if a symmetrical colorbar is used.
plt.imshow(heatmap, cmap = 'RdBu', vmin  = -heatmap.max(), vmax = heatmap.max())
plt.colorbar()

Second Prediction in the List

temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=True, num_features=5, hide_rest=True)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Rest of the image from the second prediction i.e. top_labels[1]

temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=True, num_features=5, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

Visualizing 'pros and cons'

temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=False, num_features=10, hide_rest=False)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

temp, mask = explanation.get_image_and_mask(explanation.top_labels[1], positive_only=False, num_features=1000, hide_rest=False, min_weight=0.1)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask))

#Select the same class explained on the figures above.
ind =  explanation.top_labels[1]#Map each explanation weight to the corresponding superpixel
dict_heatmap = dict(explanation.local_exp[ind])
heatmap = np.vectorize(dict_heatmap.get)(explanation.segments)#Plot. The visualization makes more sense if a symmetrical colorbar is used.
plt.imshow(heatmap, cmap = 'RdBu', vmin  = -heatmap.max(), vmax = heatmap.max())
plt.colorbar()

from lime import lime_image
explainer = lime_image.LimeImageExplainer()
explanation = explainer.explain_instance(images_batch[0].numpy().astype('double'), model_1.predict,top_labels=3, hide_color=0, num_samples=1000)
from skimage.segmentation import mark_boundariestemp_1, mask_1 = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
temp_2, mask_2 = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=False, num_features=10, hide_rest=False)fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,15))
ax1.imshow(mark_boundaries(temp_1, mask_1))
ax2.imshow(mark_boundaries(temp_2, mask_2))
ax1.axis('off')
ax2.axis('off')plt.savefig('mask_default.png')

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快团团供货大团长如何查看帮卖团长的订单?

一、功能说明 可以看到团购中每个帮卖团长帮卖产生的订单 二、具体设置方法 1、小程序端如何操作? 在团购页面中,点击订单管理,在这里可以选择全部团长订单,我的团订单,和帮卖团长的帮卖订单。 2、PC端如何操作&am…

ssm616基于vue.js的购物商场的设计与实现+vue【已测试】

前言:👩‍💻 计算机行业的同仁们,大家好!作为专注于Java领域多年的开发者,我非常理解实践案例的重要性。以下是一些我认为有助于提升你们技能的资源: 👩‍💻 SpringBoot…

几句话搞懂什么是docker image?它主要解决什么问题?他用什么技术实现的?

一、什么是docker image? 1、除去LinuxOS内核资源的用户空间的一组资源集合的快照。 2、使用laber区分版本。 3、使用仓库进行分发。 4、符合OCI标准的Runtime都可以运行docker image. 二、他主要解决什么问题? 1、最最重要的就是解决可移植性!当你本地…

【基于C++与OpenCV实现魔方图像识别和还原算法】施工总览图

文章目录 主要效果展示思维导图魔方还原算法 本系列博客长期更新,分为两大部分 OpenCV实现魔方六面识别 C编写科先巴二阶段还原算法实现三阶魔方的还原 主要效果展示 摄像头识别六面 3D图像构建,提供还原公式 动画演示还原过程 思维导图 魔方还原算法 参…

达梦8 开启物理逻辑日志对系统的影响

物理逻辑日志,是按照特定的格式存储的服务器的逻辑操作,专门用于 DBMS_LOGMNR 包挖掘获取数据库系统的历史执行语句。当开启记录物理逻辑日志的功能时,这部分日志内 容会被存储在重做日志文件中。 要开启物理逻辑日志的功能,需要…

Anaconda3 使用sudo运行时找不到命令

前言 最近在跑AI,使用到了Anaconda,但是在使用sudo命令运行的时候会出现找不到命令的情况 我的Anaconda是在chen这个普通用户下安装的,系统是 ubuntu20.04.06 LTS chenchen:~$ sudo conda sudo: conda: command not found解决方法如下: 编…

社区物资交易互助平台的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,基础数据管理,论坛管理,公告信息管理 前台账户功能包括:系统首页,个人中心,论坛,求助留言板,公…

SQL Chat:从SQL到SPEAKL的数据库操作新纪元

引言 SQL Chat是一款创新的、对话式的SQL客户端工具。 它采用自然语言处理技术,让你能够像与人交流一样,通过日常对话的形式对数据库执行查询、修改、创建及删除操作 极大地简化了数据库管理流程,提升了数据交互的直观性和效率。 在这个框…

【Vue 路由参数传递】

文章目录 一、使用 params 传递参数1. 基本路由格式2. 可选参数的使用代码示例 二、使用 query 传递参数1. 基本路由格式代码示例 总结 一、使用 params 传递参数 1. 基本路由格式 在Vue中,使用params传递参数是通过路由的动态片段来完成的。在路由配置中&#xf…

电机的速度和频率

电机的速度和频率通常通过以下几种方法来采集:1. 霍尔效应传感器:• 霍尔效应传感器可以检测磁场变化,当电机轴上安装有磁性标记物(如磁钢)时,每当磁钢经过传感器,就会产生一个脉冲。通过计数单…

反AI浪潮中的新机遇:Cara艺术社区异军突起

近日,一个名为Cara的艺术社区在网络上迅速走红,其独特的反AI定位吸引了大量创意人士。在AI技术日益普及的今天,Cara社区反其道而行之,致力于打造一个无AI侵害的创作和交流环境。这一创新模式不仅赢得了艺术家的青睐,也为国内创业者提供了新的思考角度。 一、精准定位,守…

描述Hibernate的映射文件和配置文件的作用

Hibernate的映射文件和配置文件在Hibernate框架中起着至关重要的作用,它们分别负责不同的配置和映射任务。以下是关于Hibernate映射文件和配置文件的具体作用描述: Hibernate映射文件(hbm.xml)的作用 定义对象与数据库表之间的映…

“123456”再登顶?2024年10大流行密码大盘点

最受欢迎的10个密码排行榜: 1.123456: 这个密码依然稳坐第一的位置,因为它简单易记,但同样也非常不安全。 2.password: 作为“密码”的英文单词,它位列第二,同样因为简单而常见。 3.12345678…

C++ list链表的使用和简单模拟实现

目录 前言 1. list的简介 2.list讲解和模拟实现 2.1 默认构造函数和push_back函数 2.2 迭代器实现 2.2.1 非const正向迭代器 2.2.2 const正向迭代器 2.2.3 反向迭代器 2.3 插入删除函数 2.3.1 insert和erase 2.3.2 push_back pop_back push_front pop_front 2.4 构…

[word] word如何清除超链接 #媒体#笔记#知识分享

word如何清除超链接 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享下word如何清除超链接的操作办法,一起来学习下吧! 1、清除所有超链接 按下组合键CtrlshiftF9,就可以将网上复制带有超链…

「前端+鸿蒙」鸿蒙应用开发-TS声明和数据类型

在鸿蒙应用开发中使用 TypeScript (TS) 可以带来类型安全和现代编程语言特性的好处。TypeScript 是 JavaScript 的一个超集,它添加了类型注解、接口、类和其他特性。以下是 TypeScript 快速入门的指南,包括声明变量和使用数据类型。 TS快速入门-声明和数…

手撸一个java网关框架

手写一个简易的Java网关框架涉及到很多方面,但我会提供一个基本的框架概念和代码示例,帮助你理解网关的基本构建。以下是一个简单的Java网关框架的实现: 定义路由:需要一个路由表来映射请求的URL到对应的处理器。 请求处理&#x…

ARM-V9 RME(Realm Management Extension)系统架构之系统安全能力的RAS

安全之安全(security)博客目录导读 目录 一、RAS 错误记录中的机密信息 二、RAS 错误信号 三、内存保护引擎的 RAS ARM架构安全手册提供了使用 Arm RAS 架构在处理单元(PE)和系统组件中实现 RAS 的要求。本节为本规范中描述的系统组件提供了附加规则…

服务部署:Linux系统环境部署java的jar包步骤

1. 准备环境 安装 Java Runtime Environment (JRE) 首先,确保你的系统上已经安装了 Java Runtime Environment (JRE)。你可以使用以下命令来安装 OpenJDK: sudo apt update sudo apt install openjdk-11-jre 通过以下命令检查 Java 是否安装成功&…

《软件定义安全》之三:用软件定义的理念做安全

第3章 用软件定义的理念做安全 1.不进则退,传统安全回到“石器时代” 1.1 企业业务和IT基础设施的变化 随着企业办公环境变得便利,以及对降低成本的天然需求,企业始终追求IT集成设施的性价比、灵活性、稳定性和开放性。而云计算、移动办公…