对比深度图聚类的硬样本感知网络

Hard Sample Aware Network for Contrastive Deep Graph Clustering

文章目录

  • Hard Sample Aware Network for Contrastive Deep Graph Clustering
    • 摘要
    • 引言
    • 方法
    • 实验
    • 结论
    • 启发点

摘要

本文提出了一种名为Hard Sample Aware Network (HSAN)的新方法,用于对比深度图聚类。HSAN通过引入全面相似性度量标准和动态样本加权策略,解决了现有硬样本挖掘方法中结构信息缺失和忽视硬正样本对的问题。HSAN不仅挖掘硬负样本,还挖掘硬正样本,以提高样本的区分能力。
论文链接
开源代码

引言

现有方法在处理硬样本时存在以下不足

  • 结构信息的忽视:在测量样本的硬度时,现有方法忽略了重要的结构信息,这降低了所选硬负样本的代表性。结构信息对于理解样本之间的关系至关重要,而现有方法在相似性计算中没有充分利用这一点。

  • 对硬正样本对的忽视:现有工作主要关注硬负样本对,而忽略了硬正样本对。文章认为,即使在同一个聚类中,相似度低的样本也应该被仔细学习,因为这些样本对提高模型的区分能力同样重要。

  • 硬度测量的问题:现有方法在硬度测量上存在问题,导致难以有效地识别和处理硬样本。这可能会影响模型学习到的特征的质量和聚类的性能。

  • 样本对权重分配不合理:现有方法往往平等对待容易样本对和硬样本对,没有根据样本对的相似度差异动态调整权重,这限制了网络对难分样本的学习能力。

  • 对比学习中的缺陷:传统的infoNCE损失函数在图对比方法中存在缺陷,即它同等对待硬样本对和容易样本对,这限制了网络的区分能力。

为了解决这些问题,HSAN提出了一种新的相似性度量标准和动态样本加权策略,以确保网络在训练过程中更多地关注硬样本对,无论是正样本对还是负样本对,从而提高聚类的准确性和模型的区分能力。
在这里插入图片描述

方法

本文方法使用属性编码器(AE)和结构编码器(SE)对节点的属性和结构信息进行编码,得到嵌入表示。在编码后,执行K-means聚类算法,生成聚类伪标签,并从中提取高置信度的样本集合。根据伪标签和相似性度量,计算样本对伪标签,区分正负样本对。应用权重调节函数,根据样本对的相似度和伪标签动态调整权重。通过最小化硬样本感知对比损失来更新模型参数。

  • 相似性度量:HSAN通过设计一个综合的相似性度量标准来计算样本之间的相似性。这个度量标准考虑了属性嵌入和结构嵌入,通过可学习的线性组合来更好地揭示样本之间的关系。

  • 硬样本识别:在高置信度的聚类信息指导下,HSAN首先识别潜在的正样本对和负样本对。这是通过在共识节点嵌入上执行聚类算法并生成高置信度的聚类伪标签来完成的。

  • 动态样本加权:HSAN提出了一种新颖的对比样本加权策略,根据训练难度动态调整硬样本对的权重。具体来说,对于高置信度的正样本对,如果它们之间的相似度较低,则增加其权重;对于负样本对,如果它们之间的相似度较高,则也增加其权重。这样,网络就会更多地关注难以区分的样本对。

  • 硬样本感知对比损失:HSAN设计了一种硬样本感知的对比损失函数,该损失函数利用上述的相似性度量和动态加权策略,指导网络专注于硬样本对,同时减少对容易样本对的关注。

实验

在这里插入图片描述
将HSAN与其他13种最先进的深度图聚类方法进行了比较,包括经典深度图聚类方法和对比深度图聚类方法。结果表明HSAN在多个数据集上均取得了优越的性能
在这里插入图片描述

结论

本文提出的Hard Sample Aware Network (HSAN)在对比深度图聚类任务中表现出显著的有效性。通过一系列广泛的实验,HSAN在多个基准数据集上超越了现有方法,证明了其在处理硬样本对和提升聚类性能方面的优势。此外,HSAN的设计考虑了计算效率,确保了其在时间和空间复杂性上的可行性。这些结果不仅验证了HSAN方法的有效性,也突显了硬样本挖掘在提高聚类准确性中的重要性。
尽管HSAN在当前研究中取得了积极成果,但仍存在进一步探索和改进的空间。未来的工作可以集中在以下几个方向:首先,开发可学习和自适应的置信度参数,以动态调整模型对样本的关注度;其次,将HSAN扩展到多模态数据集,以利用更丰富的信息源;再次,评估HSAN在更大规模数据集上的性能,并探索其在不同类型图结构上的适应性;此外,研究新的算法优化技术以提高HSAN的计算效率;最后,探索HSAN在其他领域的应用潜力,如社交网络和生物信息学等。这些方向将有助于推动深度图聚类技术的发展,并拓展其在更广泛场景中的应用。

启发点

HSAN(Hard Sample Aware Network)算法是为深度图聚类任务设计的,它专注于通过对比学习机制挖掘硬样本,以提高聚类性能。尽管HSAN是专为图数据设计的,其核心思想和技术可以间接地应用于语义分割任务,尤其是在以下方面:

  • 硬样本挖掘:在语义分割中,硬样本挖掘可以用于识别那些难以分类的像素,例如,位于不同类别边界上的像素。通过特别关注这些像素,可以提高分割的准确性。

  • 特征表示学习:HSAN通过学习节点的低维嵌入表示来改善聚类结果。类似地,在语义分割中,学习更好的特征表示可以帮助模型更好地区分不同的语义区域。

  • 相似性度量:HSAN使用综合的相似性度量标准来评估样本之间的关系。在语义分割中,这种相似性度量可以用于设计损失函数,以促使模型学习到的表示能够捕捉到像素之间的空间关系。

  • 动态加权策略:HSAN中的动态样本加权策略可以调整模型对不同样本的关注度。在语义分割中,可以设计类似的策略来增加模型对难以分割区域的关注。

  • 对比学习:HSAN利用对比学习来提升特征的区分能力。在语义分割中,对比学习可以用于增强模型对不同类别特征的识别能力。

然而,需要注意的是,语义分割通常处理的是网格状的图像数据,而HSAN处理的是图结构数据。因此,如果要将HSAN应用于语义分割,可能需要对其进行适当的修改和适配,例如,将图像数据转换为图表示,并调整算法以适应像素级别的预测任务。
此外,语义分割任务通常需要密集的像素级标注,而HSAN在设计时并未明确考虑像素级的监督信号。因此,如果要将HSAN应用于语义分割,可能还需要考虑如何有效地结合有监督的标注信息。

  • 图结构数据(邻接表与邻接矩阵)与栅格数据
    在结合卷积神经网络(CNN)和图卷积网络(GCN)进行语义分割的任务中,首先利用CNN对输入的栅格数据(如图像)进行特征提取,以获得丰富的特征表示。接着,将这些特征作为节点属性,构建图结构,其中每个像素点对应图中的一个节点,并且根据像素的空间邻近性或特征相似性建立边。然后,将CNN提取的特征输入到GCN中,通过图卷积操作进一步聚合局部和全局上下文信息,增强特征表示。最后,基于GCN的输出对每个节点(像素)进行分类,实现语义分割。整个过程既利用了CNN在特征提取上的优势,也发挥了GCN在处理图结构数据和捕捉长距离依赖关系上的能力,从而提高了分割的准确性和效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/24597.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git+Gitlab 远程库测试学习

Git远程仓库 1、Git远程仓库 何搭建Git远程仓库呢?我们可以借助互联网上提供的一些代码托管服务来实现 Gitee 码云是国内的一个代码托管平台,由于服务器在国内,所以相比于GitHub,码云速度会更快 码云 Gitee - 基于 Git 的代码托…

Python实现连连看9

(2)标识选中的图片 在判断出玩家选中的是哪一张图片之后,接下来就可以标识选中的图片了,即在该选中的图片外围画矩形。代码如下所示。 FIRSTCLICK True #FIRSTCLICK是全局变量 if(click_col>0 and click_row>0) and \(no…

【进程调度的基本过程】初步认识进程和线程的区别与联系:计算机是如何工作的

​ 🔥个人主页: 中草药 🔥专栏:【Java】登神长阶 史诗般的Java成神之路 🐺一.冯诺依曼体系结构 认识计算机的祖师爷 -- 冯诺依曼 冯诺依曼(John von Neumann,1903年12⽉28⽇-1957年2⽉8⽇&…

调用华为API实现语音合成

目录 1.作者介绍2.华为云语音合成2.1 语音合成介绍2.2 华为语音合成服务2.3 应用场景 3. 实验过程以及结果3.1 获取API密钥3.2 调用语音合成算法API3.3 实验代码3.4 运行结果 1.作者介绍 袁斌,男,西安工程大学电子信息学院,2023级研究生 研究…

SpringBoot整合Skywalking

下载Java Agent 官网:https://skywalking.apache.org/downloads/ 提示:Agent最好到网上找一找之前的版本,新版本可能有bug,如果出现了并且网上也几乎没有这个版本的解决方法那么就切换之前的版本 本地启动时 -javaagent:d:\opt\…

建筑特种工高处作业吊篮安装拆卸工题库

1、施工现场外租吊篮设备,在施工前应由( )编制专项施工方案,并由( )技术负责人和现场总监理工程师签字后实行。 A 使用单位 使用单位 B 使用单位 租赁单位 C 租赁单位 使用单位 D 租赁单位 租赁单位 2、施工现场外租吊篮…

java基础语法整理 ----- 上

java基础语法 一、变量二、数据类型三、标识符四、键盘录入五、判断语句1. 三种格式2. 练习题 六、switch语句七、循环八、循环控制语句九、方法 一、变量 1.什么是变量: 在程序运行过程中,其值可以发生改变的量从本质上讲,变量是内存中的一…

MineAdmin 前端打包后,访问速度慢原因及优化

前言:打包mineadmin-vue前端后,访问速度很慢,打开控制台,发现有一个index-xxx.js文件达7M,加载时间太长; 优化: 一:使用文件压缩(gzip压缩) 1、安装compre…

java基础练习题

1、一个".java"源文件中是否可以包括多个类?有什么限制? 可以包含多个类。但是只有一个类可以声明为public,且要求声明为public的类的类名与源文件名相同。 2、java的优势? a、跨平台性 b、安全性高 c、简单性 d、…

无延迟,持续畅玩 - Wi-Fi 6 助力打造游戏厅极致体验

1、需求背景: 连锁游戏厅行业竞争激烈,顾客对高品质的游戏体验有着高要求。网络是游戏厅的核心基础设施之一,需要确保游戏过程中的网络连接稳定性和顾客满意度。 长时间稳定连接 为保证顾客的游戏体验感,游戏厅要确保网络连接长…

使用 CloudFlare Turnstile 解决跨境电商站的垃圾邮件侵扰

最近明月一个跨境电商代维客户的网站被垃圾邮件侵扰了,从最开始的每天几封疯狂到每天几百上千封垃圾邮件,几乎所有可拦截屏蔽的关键词都是随机可变的,简单的邮件客户端拦截基本已经没有任何效果了,在收到用户的求助后经过分析发现主要是利用网站在线咨询页面里的邮件发送造…

SMS-GSM

SMS-GSM 短信模块,不想通过第三方的接口,自己搭建短信模块,提高信息安全。 /**/ package sms;import com.diagcn.smslib.CMessage; import com.diagcn.smslib.COutgoingMessage; import com.diagcn.smslib.SZHTOCService;/*** 短信模块** au…

汇编:头文件

汇编头文件(header files)在汇编语言编程中类似于高层语言中的头文件,它们通常包含宏定义、常量定义、数据结构定义、函数声明以及其他在多个汇编源文件中共享的代码;使用头文件可以提高代码的可维护性和可读性,并使代…

【全开源】云调查考试问卷系统(FastAdmin+ThinkPHP+Uniapp)

便捷、高效的在线调研与考试新选择​ 云调查考试问卷是一款基于FastAdminThinkPHPUniapp开发的问卷调查考试软件,可以自由让每一个用户自由发起调查问卷、考试问卷。发布的问卷允许控制问卷的搜集、回答等各个环节的设置,同时支持系统模板问卷&#xff…

linux内存缓存占用过高分析和优化

1、什么是buffer/cache ? buffer/cache其实是作为服务器系统的文件数据缓存使用的,尤其是针对进程对文件存在read/write操作的时候,所以当你的服务进程在对文件进行读写的时候,Linux内核为了提高服务的读写速度,则将会…

VMware ESXi 8.0U2c macOS Unlocker OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版

VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版 VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动和 NVMe 驱动 (集成驱动版) 发布 ESXi 8.0U2 集成驱动版,在个人电脑上运行企业级工作负载 请访问原文链…

HQL面试题练习 —— 求连续段的最后一个数及每个连续段的个数

目录 1 题目2 建表语句3 题解 题目来源:拼多多。 1 题目 有一张表t_id记录了id,id不重复,但是会存在间断,求出连续段的最后一个数及每个连续段的个数。 ----- | id | ----- | 1 | | 2 | | 3 | | 5 | | 6 | | 8 | | …

网线制作(双绞线+水晶头)——T568B标准

参考视频:https://www.bilibili.com/video/BV1KQ4y1i7zP/ 1、使用剥线器 2、将线捋顺、排序、剪掉牵引线 记忆技巧 1.线序颜色整体是一浅一深 2.颜色顺序是黄、蓝、绿、棕 一个黄种人、从上向下看,分别看到的是蓝天、青草(绿)、泥土(棕色) 3.中间两根浅…

数据挖掘--聚类分析:基本概念和方法

数据挖掘--引论 数据挖掘--认识数据 数据挖掘--数据预处理 数据挖掘--数据仓库与联机分析处理 数据挖掘--挖掘频繁模式、关联和相关性:基本概念和方法 数据挖掘--分类 数据挖掘--聚类分析:基本概念和方法 聚类分析 聚类分析是把一个数据对象&…

Element UI上传图片和PDF,支持预览,并支持复制黏贴上传

背景 如上图&#xff0c;使用Element UI的el-upload组件&#xff0c;并且预览的时候可以展示图片和PDF格式文件&#xff1b; 做法 index.vue <template><div><el-uploadv-model"diaForm.list":limit"5":on-exceed"handleExceed"…