基于某评论的TF-IDF下的LDA主题模型分析

完整代码:


import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocationdf1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))# 1.构造TF-IDF
tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。n_topics = 5
# 定义LDA对象
lda = LatentDirichletAllocation(n_components=n_topics,max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

一、数据清洗

 

代码逐行讲解:

df1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))

读取同目录下的文件,df1是数据框格式

提取评论内容,并对评论内容做清洗,采用正则表达式,去除标点和英文。

用jieba对每一行的数据作分词处理,最后得到的数据展现以及数据类型。

cc395ce2626d4e26abfbe27aaf023067.png 

二、模型构建 

tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。# 定义LDA对象
n_topics = 5
lda = LatentDirichletAllocation(n_components=n_topics, max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)
  1. tf_idf_vectorizer = TfidfVectorizer()

    • 这行代码创建了一个 TfidfVectorizer 对象,这是 scikit-learn 库中的一个文本向量化工具。它将文本数据转换为TF-IDF特征矩阵,这是一种常用的文本表示形式,能够反映出文本中单词的重要性。
  2. tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])

    • 这行代码执行了两个操作:
      • fit: 根据提供的文本数据(df1['cut'])来学习词汇表和计算IDF(逆文档频率)。
      • transform: 使用学习到的词汇表和IDF来转换文本数据为TF-IDF矩阵。结果 tf_idf 是一个稀疏矩阵,其中每一行代表一个文档,每一列代表一个单词,矩阵中的值表示该单词在文档中的重要性(TF-IDF权重)。
  3. # 定义LDA对象

    • 这是一个注释行,说明接下来的代码将定义一个LDA(隐狄利克雷分配)模型对象。
  4. n_topics = 5

    • 这行代码设置了一个变量 n_topics,其值为5,表示LDA模型中的主题数量。
  5. lda = LatentDirichletAllocation( ...)

    • 这行代码创建了一个 LatentDirichletAllocation 对象,即LDA模型,用于主题建模。它接受多个参数:
      • n_components=n_topics: 设置模型中的主题数量,这里与之前定义的 n_topics 变量相等。
      • max_iter=50: 设置模型训练的最大迭代次数。
      • learning_method='online': 指定学习算法,这里使用在线学习算法。
      • learning_offset=50.: 在线学习算法中的学习偏移量。
      • random_state=0: 设置随机状态,以确保结果的可重复性。
  6. lda.fit(tf_idf)

    • 这行代码将之前转换得到的TF-IDF矩阵 tf_idf 用于训练LDA模型。fit 方法将根据文档-词项矩阵和设置的主题数量来学习文档的主题分布以及词项在各个主题下的分布。

总的来说,这段代码的目的是使用LDA模型来发现文档集合中的潜在主题。首先,它通过TF-IDF向量化器将文本数据转换为数值矩阵,然后使用这个矩阵来训练LDA模型,最后可以通过模型来分析文档的主题分布。

打印出来的结果为:

f3c8644da9304920ae8f2e2331ad532a.png 

三、结果展现 

#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)

这段代码是用于分析和可视化LDA(Latent Dirichlet Allocation,隐狄利克雷分配)模型的输出结果的。以下是对代码的逐行解释:

 

这部分代码定义了两个函数,用于处理和展示LDA模型的结果。

  1. n_top_words = 50

    • 设置变量 n_top_words 为50,表示每个主题中要提取的前50个最重要的词。
  2. def top_words_data_frame(...) -> pd.DataFrame:

    • 定义了一个名为 top_words_data_frame 的函数,它接受一个LDA模型、一个TF-IDF向量化器和一个整数 n_top_words 作为参数,并返回一个包含每个主题的前 n_top_words 个词的DataFrame。
  3. rows = []

    • 初始化一个空列表 rows,用于存储每个主题的顶级词汇。
  4. feature_names = tf_idf_vectorizer.get_feature_names_out()

    • 从TF-IDF向量化器中获取词汇表,以便知道每个特征索引对应的词。
  5. for topic in model.components_:

    • 遍历LDA模型的每个主题。
  6. top_words = [feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1])

    • 对每个主题,获取其权重数组的排序索引,然后选择前 n_top_words 个索引对应的词。
  7. rows.append(top_words)

    • 将每个主题的顶级词汇列表添加到 rows 列表中。
  8. columns = [f'topic {i + 1}' for i in range(n_top_words)]

    • 创建DataFrame的列名,表示每个主题的顶级词汇。
  9. df = pd.DataFrame(rows, columns=columns)

    • 使用 rows 数据和 columns 列名创建一个DataFrame。
  10. return df

    • 返回包含每个主题顶级词汇的DataFrame。

 

这部分代码使用LDA模型对文档进行主题预测,并展示结果。

  1. def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:

    • 定义了一个名为 predict_to_data_frame 的函数,它接受一个LDA模型和一个NumPy数组 X 作为参数,并返回一个包含文档主题概率分布的DataFrame。
  2. matrix = model.transform(X)

    • 使用LDA模型的 transform 方法将文档集 X 转换为每个文档的主题概率分布矩阵。
  3. columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]

    • 创建列名,表示每个文档属于每个主题的概率。
  4. df = pd.DataFrame(matrix, columns=columns)

    • 使用转换得到的主题概率矩阵和列名创建一个DataFrame。
  5. return df

    • 返回包含文档主题概率分布的DataFrame。

 

这部分代码执行了上述定义的函数,并打印了结果。

  1. top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)

    • 调用 top_words_data_frame 函数,获取LDA模型的每个主题的前50个词。
  2. print(top_words_df)

    • 打印每个主题的前50个词。
  3. X = tf_idf.toarray()

    • 将TF-IDF矩阵转换为一个NumPy数组,以便用于主题预测。
  4. predict_df = predict_to_data_frame(lda, X)

    • 调用 predict_to_data_frame 函数,获取文档的主题概率分布。
  5. print(predict_df)

    • 打印每个文档属于每个主题的概率。

这段代码的目的是分析LDA模型的结果,展示每个主题的代表性词汇以及文档的主题概率分布,从而帮助理解文档集合中的潜在主题结构。

88f21d2d865741a38f4aadc86b88b949.png

 

四、可视化分析

# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

结果展现:

24d632f02fc644db9fb9eee781e2cc46.png 

五、词云图分析

另写代码,加入停用词后,对数据内容作词云图分析:

import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from wordcloud import WordCloud  # 导入 WordCloud 类
import matplotlib.pyplot as plt# 读取小红书评论数据
df1 = pd.read_csv('小红书评论.csv')
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))# 定义停用词列表,将你、了、的、我、你等常见词加入其中
stop_words = set(['你', '了', '的', '我', '你', '他', '她', '它','是','有','哭','都','吗','也','啊'])# 分词并过滤停用词
df1['cut'] = df1['cut'].apply(lambda x: " ".join([word for word in jieba.lcut(x) if word not in stop_words]))# 生成小红书评论的词云图
def generate_wordcloud(text):wordcloud = WordCloud(background_color='white', font_path='msyh.ttc').generate(text)plt.figure()plt.imshow(wordcloud, interpolation="bilinear")plt.title("小红书评论词云")plt.axis("off")plt.show()# 获取小红书评论的文本
all_comments_text = ' '.join(df1['cut'])# 生成词云图
generate_wordcloud(all_comments_text)

结果展现:e5fc30176bda4be4bba7d3af2eecfa49.png 

数据我在上方绑定了,需要可自取。 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/24328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Vue】组件化开发

文章目录 一、介绍二、根组件 App.vue 一、介绍 组件化&#xff1a;一个页面可以拆分成一个个组件&#xff0c;每个组件有着自己独立的结构、样式、行为。 好处&#xff1a;便于维护&#xff0c;利于复用 → 提升开发效率。 组件分类&#xff1a;普通组件、根组件。 根组件…

MySQL 高级 - 第十一章 | 索引优化与查询优化

目录 第十一章 索引优化与查询优化11.1 数据准备11.2 索引失效案例11.2.1 全值匹配10.2.2 最佳左前缀法则10.2.3 主键插入顺序10.2.4 计算、函数、类型转换&#xff08;自动或手动&#xff09;导致索引失效10.2.5 范围条件右边的列索引失效10.2.6 不等于&#xff08;! 或者 <…

删除目录

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 删除目录可以通过使用os模块提供的rmdir()函数实现。通过rmdir()函数删除目录时&#xff0c;只有当要删除的目录为空时才起作用。rmdir()函数的基本语…

牛客java基础(一)

A 解析 : java源程序只允许一个public类存在 &#xff0c;且与文件名同名 ; D hashCode方法本质就是一个哈希函数&#xff0c;这是Object类的作者说明的。Object类的作者在注释的最后一段的括号中写道&#xff1a;将对象的地址值映射为integer类型的哈希值。但hashCode()并不…

Linux性能优化实战

Linux性能优化实战 33 | 关于 Linux 网络&#xff0c;你必须知道这些&#xff08;上&#xff09;如何提高系统并发&#xff1f;&#xff08;8条&#xff09;如何理解分布式&#xff1f;如何理解云计算&#xff1f;如何理解微服务&#xff1f;TCP/IP 网络栈如何分层&#xff1f;…

前端 JS 经典:打印对象的 bug

1. 问题 相信这个 console 打印语句的 bug&#xff0c;其实小伙伴们是遇到过的&#xff0c;就是你有一个对象&#xff0c;通过 console&#xff0c;打印一次&#xff0c;然后经过一些处理&#xff0c;再通过 console 打印&#xff0c;发现两次打印的结果是一样的&#xff0c;第…

SSM整合总结

一.核心问题 (一)两个容器 web容器 web相关组件&#xff08;controller,springmvc核心组件&#xff09; root容器 业务和持久层相关组件&#xff08;service,aop,tx,dataSource,mybatis,mapper等&#xff09; 父容器&#xff1a;root容器&#xff0c;盛放service、mapper、…

Oracle EBS AP发票验证-计税期间出现意外错误解决方法

系统版本 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状: **打开发票题头或发票行“税详细信息”**错误提示如下: 由于以下原因而无法针对"税"窗口中所做的修改更新 Oraclee Payables信息: 尚未为税率或帐户来源税率设置可退回税/应纳税额帐户。请…

Java和Web前端哪个有发展前景?

Java和Web前端都是当今技术行业里的热门岗位&#xff0c;岗位招聘需求量大&#xff0c;人才竞争度高&#xff0c;同学们掌握这两个岗位里其中任何一个的相关主流技术&#xff0c;都可以找到一份不错的职位。下面请允许笔者做一个简要的分析阐述&#xff1a; 一、Web前端 Web前…

C语言过度C++语法补充(面向对象之前语法)

目录 1. C相较于C语言新增的语法 0. C 中的输入输出 1. 命名空间 1. 我们如何定义一个命名空间&#xff1f; 2. 如何使用一个命名空间 3. 命名空间中可以定义什么&#xff1f; 4. 在 相同或者不同 的文件中如果出现 同名的命名空间 会如何&#xff1f; 5. 总结~~撒花~~…

网络空间安全数学基础·多项式环与有限域

5.1 多项式环&#xff08;掌握&#xff09; 5.2 多项式剩余类环&#xff08;理解&#xff09; 5.3 有限域&#xff08;熟练&#xff09; 5.1 多项式环 定义&#xff1a;设F是一个域&#xff0c;称是F上的一元多项式&#xff0e; 首项&#xff1a;如果an≠0&#xff0c;则称 a…

CAD二次开发(8)-探索实现不重启CAD进行热部署代码

最近在研究CAD二次开发过程中&#xff0c;调试代码的过程中&#xff0c;需要频繁地重启CAD&#xff0c;非常浪费我们的开发时间&#xff0c;所以我就一直在想&#xff0c;怎么可以实现在不每次重启代码和CAD的情况下&#xff0c;实现代码的热部署效果。 我找到的方式&#xff…

HDFS的块汇报和块放置策略--从一次HDFS写文件故障开始(WIP)

文章目录 前言事故分析&#xff1a;代码解析BlockReport的调度和时机哪些Block会进行FBR或者IBRIBR所选定的BlockFBR所选定的Block 块放置策略详解之在上层寻找机器为文件添加块的基本流程块放置策略&#xff1a;选择机器为每个副本逐个寻找机器在指定范围内随机寻找简单看一下…

本地运行ChatTTS

TTS 是将文字转为语音的模型&#xff0c;最近很火的开源 TTS 项目&#xff0c;本地可以运行&#xff0c;运行环境 M2 Max&#xff0c;差不多每秒钟 4&#xff5e;&#xff5e;5 个字。本文将介绍如何在本地运行 ChatTTS。 下载源码 首先下载源代码 git clone https://github…

一句话说清HDMI ARC eARC功能和区别

HDMI&#xff1a; 高清多媒体接口&#xff0c;主要用于传输高清音视频信号&#xff0c;High Definition Multimedia Interface。 ARC: 音频回传通道&#xff0c;Audio Return Channel eARC: 增强型音频回传通道&#xff0c;第一个E是增强的意思&#xff0c;Enhanced Audio…

给孩子的端午节礼物:最新初中数学思维导图大合集+衡水高考学霸笔记,可下载打印!

大家好哇&#xff01;端午节到了&#xff0c;阿星给家里有孩子的伙伴们一份礼物哦&#xff01;今天给大家带来一个超级实用的学习神器——思维导图法&#xff0c;最新版的初中数学思维导图大合集&#xff01; 这可不是我吹哦&#xff0c;连哈佛、剑桥大学都在用的高级学习方法…

3D打印随形水路:模具水路的革命性技术

在快速发展的模具制造行业中&#xff0c;3D打印技术以其独特的优势正在引领一场技术革命。其中&#xff0c;3D打印随形水路技术&#xff0c;凭借其灵活性和定制化设计的能力&#xff0c;为模具带来了前所未有的变革。 模具3D打印随形水路技术&#xff0c;是一种利用3D打印技术制…

别人状告你怎么办?你知道还可反告吗?

别人状告你怎么办&#xff1f;你知道还可反告吗&#xff1f; --李秘书讲写作&#xff1a;关于反诉状的写作技巧与策略 反诉状是民事诉讼中的一种重要法律文书&#xff0c;它允许被告在原告提起诉讼后&#xff0c;对原告提起反诉&#xff0c;以抵消原告的诉讼请求。李秘书这节…

分水岭算法分割和霍夫变换识别图像中的硬币

首先解释一下第一种分水岭算法&#xff1a; 一、分水岭算法 分水岭算法是一种基于拓扑学的图像分割技术&#xff0c;广泛应用于图像处理和计算机视觉领域。它将图像视为一个拓扑表面&#xff0c;其中亮度值代表高度。算法的目标是通过模拟雨水从山顶流到山谷的过程&#xff0…

经纬恒润助力红旗转向技术新突破

近日&#xff0c;红旗研发新视界发布《国内首发&#xff01;红旗大输出力冗余平行轴式电动助力转向器让用户出行经济又安全&#xff01;》 &#xff0c;创新突破“输出力20kN以上的冗余平行轴式电动助力转向器&#xff08;R-EPS&#xff09;”。该产品支持整车实现L2/L3级自动驾…