超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)

解读InternVL-chat1.5系列

最近并行是事情太杂乱了,静下心来看一看优秀的开源项目,但是AI技术迭代这么快,现在基本是同时看五、六个方向的技术架构和代码,哪个我都不想放,都想知道原理和代码细节,还要自己训练起来,导致每天脑袋隐隐作痛了,感觉有点天龙八部里的“鸠摩智”的状态。
…目前的大模型核心能力热点是其通用能力的提升,从判别式、到对比学习、再到如今的多阶段对齐训练。VLM多模态模型在这两年已经逐渐普及(比如qwen-vl\deepseek-vl\yi-vl\glm4-v\minicpm-v)等优秀开源模型,今天我们来直接看下当前的开源SOTA模型,InternVl1.5是上海AI LAB一直迭代的多模态视觉语言大模型,之前的版本是1.2,今年迭代到1.5后达到了国内开源的SOTA评测分数,今天我们来解读一下InternVL1.5是如何做到的!

文章更新比较仓促,我会后续再修订!感谢阅读

`

文章目录

  • 解读InternVL-chat1.5系列
    • 文章更新比较仓促,我会后续再修订!感谢阅读
  • 阅读前置知识(Internvit的由来)
  • 一、模型信息概览
  • 二、Feature
    • 1. PT阶段
    • 2. 训练数据
    • 3. Scale up Model
    • 4. Dynamic Aspect Ratio Matching
  • 总结

如今的VLM多模态虽然训练方式阶段各有不同,但是架构范式同质化严重:
1. 视觉基础模型(多模态图文能力的视觉模型,不只有检测、分割、分类、还有图文检索、图像描述、多模态对话的能力)
2. LLM模型
3. 链接两个模型的mlp projector

阅读前置知识(Internvit的由来)

因为InternVL是从1.0开始迭代的,这里我们主要从1.5的版本和其前一版本1.2来进行解析!
Intervl1.0 经过三个阶段:对比学习PT、生成PT、SFT得到的一个视觉语言模型(数据多到少,质量低到高),最后通过深度和广度维度测试选定为6B模型。
在这里插入图片描述

作者团队介绍到:
Intervit就是从Intervl中抽出internVIT-6B.(应该是48层变成45层)作为VLM视觉基础模型;也可以直接
作分类和图文检索、和SD的文本编码器(开源项目Mulan)
PIXEL Shuffle :空间下采样操作,具体在MLP层输入之前;reshape后,默认下采样0.5,1024->256,这样减少了输入到LLM的token数量。代码参考:

vit_embeds = self.pixel_shuffle(vit_embeds,scale_factor=self.downsample_ratio)

一、模型信息概览

internVL-chat参考了LLaVA-NeXT-34B的做法,scale up 模型尺寸来验证VL性能的提升,这是1.2版本的思路,而1.5建立在1.2基础上进行了 迭代优化,先简要介绍下1.5,以及和1.2的区别。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
其中包含现在开源的和Plus版本:
MINI-intervl1.5-4 25.5B (internvit (6B)+internlm2-chat-20B(19.86B)+MLP)
MINI-intervl1.5-PLUS: (internvit (6B)+Nous-Hermes-2-Yi-34B+MLP) <未开源>

其中MIN包含:
MINI-intervl1.5-4.2B (internvit (300M)+phi3-mini-128K(3.8b)+MLP)
MINI-intervl1.5-2.2B (internvit (300M)+internLM2-chat_1.8B+MLP)
在这里插入图片描述

同样我们从上图对比中可以直观看到1.2到1.5之间一些明显的区别,同样也是改进提升的部分。
主要部分来说LLM的模型基座基本是一样的从小到大,再到34B的Nous-Hermes-2-Yi-34B(HF上开源fine-tune的版本)为PLUS版本的基座,基本上都是挑选的开源模型和其兄弟团队的intern2LM系列。所以LLM模型本身没什么特别需要说明的。
而至于MINI版本是其视觉编码器InternVIT通过蒸馏从6B压缩到300M得到的,再结合PHI3这些小模型。接下来让我们进入核心环节。

二、Feature


不同的改进之处

1. PT阶段

1.2版本的PT阶段VIT+MLP,而1.5的PT阶段对于大尺寸的LLM只训练MLP,小尺寸的LLM训练MLP+vit,

额外说下在PT后模型会被抽出来,减少三层也就是Internvit模型从原来48层减少到45层,再试用Pixel
suffle减少token数量到256.

2. 训练数据

额外使用了GPT-40模型进行标注生成,已经开源在huggingface上

1.5比1.2扩充了在SFT阶段扩充了高质量的双语数据(多语言、精细Prompt标注),特别强化了图像分辨率支持到4K和OCR能力。
因为多模态训练本身需要多任务数据集去训练,数据是保证模型评分指标的第一优先级。
在这里插入图片描述在这里插入图片描述

不同的只是LLM模型的不同。MINI版本的分别选择了internLM2-chat-1.8B和PHI3-mini-128K
在这里插入图片描述

3. Scale up Model

视觉模型与LLM参数量差距过大,一味提升大模型的参数量,VLM的能力并不会随之线性提升,因此从过去的版本的InternVL中通过实验证明了,视觉编码器的scale up也同样重要。所以视觉模型和语言模型同时scale up ,对于性能提升是有必要的,这也贯彻了sacle law。

4. Dynamic Aspect Ratio Matching

这是internvl1.5非常重要的一步骤,因为模型作者认为图像分辨率对于性能提升非常关键,因此聚焦于动态自定义分辨率,设计实现如上图:

  1. 预设纵横比集合:例如{1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:3, 3:2 …,2:6}多种可能的组合(这取决于自定义min和max两个变量,后面代码会说到)
  2. 最优匹配:对于每个输入图像,系统会计算其纵横比,并与预定义的集合进行比较,找出差异最小的纵横比。那么如果有多个匹配的纵横比(即并列最小差异)怎么办?比较原始图像面积与特定纵横比下的图像面积来实现的。如果特定纵横比下的图像面积大于原始图像面积的一半,那么这个纵横比会被选为最优纵横比。
  3. patch 分割:输入图像被动态分割成448x448的patch ,patch的数量是根据图像匹配的纵横比和分辨率 (在1到12之间变化)。
  4. 图像分割与缩略图(Image Division & Thumbnail)
    调整图像分辨率:一旦确定了合适的纵横比,图像将被调整到相应的分辨率。例如,一个800×1300的图像将被调整到896×1344。
    分割图像:调整后的图像被分割成448×448像素的瓦片。在训练阶段,根据图像的纵横比和分辨率,瓦片的数量可以在1到12,推理时候是1到40
    全局上下文缩略图:同时会resize 原始图像到448x448,帮助模型理解整体场景。

核心代码如下,比较简单不做注释了:

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Imagefrom torchvision.transforms.functional import InterpolationModeIMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)def build_transform(input_size):MEAN, STD = IMAGENET_MEAN, IMAGENET_STDtransform = T.Compose([T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),T.ToTensor(),T.Normalize(mean=MEAN, std=STD)])return transformdef find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):best_ratio_diff = float('inf')best_ratio = (1, 1)area = width * heightfor ratio in target_ratios:target_aspect_ratio = ratio[0] / ratio[1]ratio_diff = abs(aspect_ratio - target_aspect_ratio)if ratio_diff < best_ratio_diff:best_ratio_diff = ratio_diffbest_ratio = ratioelif ratio_diff == best_ratio_diff:if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:best_ratio = ratioreturn best_ratio#动态分辨率预处理
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):orig_width, orig_height = image.sizeaspect_ratio = orig_width / orig_height# calculate the existing image aspect ratiotarget_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) ifi * j <= max_num and i * j >= min_num)target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])# find the closest aspect ratio to the targettarget_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)# calculate the target width and heighttarget_width = image_size * target_aspect_ratio[0]target_height = image_size * target_aspect_ratio[1]blocks = target_aspect_ratio[0] * target_aspect_ratio[1]# resize the imageresized_img = image.resize((target_width, target_height))processed_images = []for i in range(blocks):box = ((i % (target_width // image_size)) * image_size,(i // (target_width // image_size)) * image_size,((i % (target_width // image_size)) + 1) * image_size,((i // (target_width // image_size)) + 1) * image_size)# split the imagesplit_img = resized_img.crop(box)processed_images.append(split_img)assert len(processed_images) == blocksif use_thumbnail and len(processed_images) != 1:thumbnail_img = image.resize((image_size, image_size))processed_images.append(thumbnail_img)return processed_imagesdef load_image(image_file, input_size=448, max_num=6):image = Image.open(image_file).convert('RGB')transform = build_transform(input_size=input_size)images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)pixel_values = [transform(image) for image in images]pixel_values = torch.stack(pixel_values)return pixel_values

额外的实验结果是,训练在1-12 块Patch的范围内,但是推理时候泛化到了40个,(开始说过VIT模型输出是256个token,所以256x(40+1)=10496),实验证明24块为最优效果。

后续有代码相关问题和实践问题我会修订补充在这里

总结

internvl,通过自己提炼的Internvit和探索大模型参数,最终以6B为基准作为基线视觉编码器,再通过提高分辨率改为动态;在视觉模型上下了很大的功夫;其次同样scale up大模型参数量,这也符合scale law的经验,但是最关键的还有其1.5版本尚未开源的高质量数据集(1.2的数据集也可以用,但是明显1.5有一多半的功劳还是数据),期待后续开源数据集。其MINI系列提供了2B和4B版本的模型对于散修来说非常友好,最近几天我也在折腾,打算先用Lora试(用MINI2B版本,进行Lora target qkv \bf16 大概19G+显存的训练开销),值得一提的是其尚未开源的PLUS版本应该Beach mark得分会更高,但是因为模型参数40B比较大 ,可能普通散修没有资源来微调。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/23595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

特征工程,减小过拟合

目录 特征工程 减小过拟合 图像增强方法 特征工程是机器学习和数据分析中不可或缺的一环,其重要性不言而喻。以下是关于特征工程的详细回答: 一、定义 特征工程是将原始数据转化为更好的表达问题本质的特征的过程,旨在发现对因变量y有明显影响作用的特征(通常称自变量…

Linux驱动开发笔记(四)设备树进阶及GPIO、Pinctrl子系统

文章目录 前言一、设备树的进阶知识1. 追加/修改节点内容2.chosen子节点3. 获取设备树节点信息3.1 of_find_node_by_path( )函数3.2 of_find_node_by_name( )函数3.3 of_find_node_by_type( )函数3.4 of_find_compatible_node( )函数3.5 of_find_matching_node_and_match( )函数…

Day30 登录界面设计

​ 本章节,实现了登录界面窗口设计 一.准备登录界面图片素材(透明背景图片) 把准备好的图片放在 Images 文件夹下面,格式分别是 .png和 .icoico 图片,右键属性,生成操作选 内容 png 图片,右键属性,生成操作选 资源 选中 login.png图片鼠标右键,选择属性。生成的操作选…

多目标应用:MOHHO多目标哈里斯鹰优化算法求解无人机三维路径规划(MATLAB代码)

详细介绍 多目标应用&#xff1a;MOHHO多目标哈里斯鹰优化算法求解无人机三维路径规划&#xff08;MATLAB代码&#xff09;-CSDN博客 一次运行结果 完整MATLAB代码

CentOS6系统因目录有隐含i权限属性致下属文件无法删除的故障一例

CentOS6服务器在升级openssh时因系统目录权限异常&#xff08;有隐含i权限属性&#xff09;&#xff0c;下属文件无法删除&#xff0c;导致系统问题的故障一例。 一、问题现象 CentOS6在升级openssh时&#xff0c;提示如下问题&#xff1a; warning: /etc/ssh/sshd_config c…

springboot vue 开源 会员收银系统 (6) 收银台的搭建

前言 完整版演示 前面我们对会员系统 分类和商品的开发 完成了收银所需的基础信息 下面我们开始完成收银台的开发 简单画了一个收银的流程图大家参考下 从这张图我们可以分析一下几点 可以选择会员或散客收银选择会员使用相应的会员价结算使用会员卡则在价格基础根据卡折扣…

function和bind使用实践

文章目录 1.functional 接受全局函数2.functional 接受lambda表达式3.functional 接收静态成员函数4.functional 接收成员函数5.bind 绑定全局函数6.bind 绑定成员函数7.使用 placeholders占位 1.functional 接受全局函数 2.functional 接受lambda表达式 3.functional 接收静…

node.js漏洞——

一.什么是node.js 简单的说 Node.js 就是运行在服务端的 JavaScript。 Node.js 是一个基于 Chrome JavaScript 运行时建立的一个平台。 Node.js 是一个事件驱动 I/O 服务端 JavaScript 环境&#xff0c;基于 Google 的 V8 引擎&#xff0c;V8 引擎执行 Javascript 的速度非常…

神经网络搭建(1)----nn.Sequential

神经网络模型构建 采用CIFAR10中的数据&#xff0c;并对其进行简单的分类。以下图为例 输入&#xff1a;3通道&#xff0c;3232 ( 经过一个55的卷积) → 变成32通道&#xff0c;3232的图像 (经过22的最大池化) → 变成32通道&#xff0c;1616的图像 ( 经过一个55的卷积) → 变…

Sass混合宏(Mixins)使用

Sass是一个强大的CSS预处理器&#xff0c;它允许你使用变量、嵌套规则、函数等特性&#xff0c;使得CSS开发更加高效和规范。在这篇教程中&#xff0c;我将为你详细介绍一个非常有用的Sass功能——混合宏(mixins)。 1. 基础&#xff1a;混合宏的定义和使用 混合宏是一个可以复…

linux虚拟机免密登录配置

1、假设A服务器要免密登录B服务器 2、在A服务器上执行命令&#xff1a; cd /root/.ssh/ ssh-keygen -t rsa #这里会生成两个文件 一个是id_rsa私钥和公钥rsa.pub2、我们把公钥的内容复制粘贴到B服务器的/root/.ssh/authorized_keys文件下 #在A服务器上执行命令记录内容 cat …

ArkTs-TaskPool和Worker的使用

TaskPool和Worker的区别 实现TaskPoolWorker内存模型线程间隔离&#xff0c;内存不共享。线程间隔离&#xff0c;内存不共享。参数传递机制 采用标准的结构化克隆算法&#xff08;Structured Clone&#xff09;进行序列化、反序列化&#xff0c;完成参数传递。 支持ArrayBuffe…

python调用excel的demo

在本地安装Pycharm之后&#xff0c;新建工程&#xff0c;在main.py中键入如下代码,即可实现Python调用excel&#xff1a; import pandas as pd sheet pd.read_excel(test.xlsx) data sheet.loc[0].values print("读取指定行的数据:\n{0}".format(data)) 第一次编…

IT学习笔记--Flink

概况&#xff1a; Flink 是 Apache 基金会旗下的一个开源大数据处理框架。目前&#xff0c;Flink 已经成为各大公司大数据实时处理的发力重点&#xff0c;特别是国内以阿里为代表的一众互联网大厂都在全力投入&#xff0c;为 Flink 社区贡献了大量源码。 Apache Flink 是一个…

Vscode发生鼠标悬停正在加载、无法跳转和提示词的问题

Vscode发生鼠标悬停正在加载、无法跳转和提示词的问题 查看python语言服务器的日志&#xff0c;确定问题。 我的问题是加载的vscode 目录下存在一个很大的数据集目录&#xff0c;导致无法正常工作。 解决办法&#xff1a; 在vscode的pylance设置中&#xff0c;排除对应的目…

深入理解 Spring 容器:原始 Bean 的生成过程

引言&#xff1a; Spring 框架的核心功能之一是它的 IoC&#xff08;控制反转&#xff09;容器&#xff0c;它负责创建、配置和组装 Bean。在 Spring 应用程序中&#xff0c;Bean 是对象实例&#xff0c;由 Spring 容器负责其生命周期和依赖关系。本文将深入探讨 Spring 容器中…

使用 PlayCanvas 创建带有后处理效果的 3D 场景

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 使用 PlayCanvas 创建带有后处理效果的 3D 场景 应用场景介绍 本代码演示了如何使用 PlayCanvas 创建一个带有后处理效果的 3D 场景。用户可以在场景中查看一个棋盘模型&#xff0c;并使用后处理效果为场景添…

达梦 执行查询语句时报[-544]:Out of sort buf space

达梦数据库有时执行SQL中有时报[-544]:Out of sort buf space, try to adjust SORT_BUF_GLOBAL_SIZE, SORT_BUF_SIZE, SORT_BLK_SIZE. 第一反应是这条语句占用排序区太大。但真实原因是前面执行的语句耗光了全局排序区&#xff0c;后面SQL任何小的排序操作都会报这个错误从而执…

freeRTOS中使用cJSON死机的问题

问题描述 在freeRTOS中使用cJSON来处理PC通过串口发送的信息&#xff0c;但是在串口接收处理任务中调用cJSON处理的函数后会出现死机的问题 // 处理PC的信息 void ProcessPCData(uint8_t* data, uint32_t len) {int functionCode 0;cJSON* json NULL;printf("Start Pr…

天润融通助力浪鲸卫浴,智能化革新引领客户服务新高度

头部家装品牌如何用优质服务抓住客户&#xff1f; 每年初春&#xff0c;万物复苏的同时&#xff0c;家装市场也正式进入旺季。 因为春天气温回升&#xff0c;潮气逐渐散去&#xff0c;开始进入最适合施工的季节&#xff0c;木材不易变形、油漆不易起皮&#xff0c;再加上春季…