【Mongodb】Mongodb亿级数据性能测试和压测

一,mongodb数据性能测试

如需转载,请标明出处:https://zhenghuisheng.blog.csdn.net/article/details/139505973

mongodb数据性能测试

  • 一,mongodb数据性能测试
        • 1,mongodb数据库创建和索引设置
        • 2,线程池+批量方式插入数据
        • 3,一千万数据性能测试
        • 4,两千万数据性能测试
        • 5,五千万数据性能测试
        • 6,一亿条数据性能测试
        • 7,压测
        • 8,总结

之前公司将用户的游戏数据存储在mysql中,就是直接将json数据存储到mysql数据库里面,几个月不到,数据库里面已经有两亿条数据,而且每行中每个json数据量也比较大,导致占用的磁盘容量也比较大,因此为了解决mysql带来多方面的瓶颈,最终选择使用mongodb来代替mysql。为了测试mongodbdb的性能以及是否满足需求,因此做了以下测试,对mongodb在高流量时验证其增删改查的效率,以及对其进行压测

服务器配置:2核4g轻量级服务器 磁盘容量 70GB

每条数据大概在500个字节,索引有一个id主键索引,还有一个parentId和category的联合唯一索引,这里两个字段能保证唯一性,因此用唯一索引效率更优

1,mongodb数据库创建和索引设置

首先在Java代码中创建一个实体类,用这个类作为json对象插入到文档中即可。

@Data
public class Archive {private String id;//账号idprivate String parentId;private String category;private String content;
}

随后在mongodb中创建一个数据库,然后再该库下面建立一个名为 archive 的集合,mongodb的集合就是类似于mysql的表,两者概念是一样的。由于后期数据量可能非常大,因此根据mongodb官方文档所说,在数据插入前,尽量提前建立索引,为了满足业务需求,这里选择创建一个联合索引,由于我这边业务能保证要加索引的两个字段的唯一性,因此选择直接添加唯一索引

db.users.createIndex({parentId: 1,category:1}, {unique: true})

如果navicate操作不方便的话,可以安装一个 Mongodb Compass 可视化工具,如下图,很多操作都是可以在这个可视化图形界面上面直接操作的
在这里插入图片描述

2,线程池+批量方式插入数据

由于这边主要是io操作将数据插入,不需要计算之类的,因此选择使用io密集型线程池,接下来自定义一个线程池

@Slf4j
public class ThreadPoolUtil {public static ThreadPoolExecutor pool = null;public static synchronized ThreadPoolExecutor getThreadPool() {if (pool == null) {//获取当前机器的cpuint cpuNum = Runtime.getRuntime().availableProcessors();int maximumPoolSize = cpuNum * 2 ;pool = new ThreadPoolExecutor(maximumPoolSize - 2,maximumPoolSize,5L,   //5sTimeUnit.SECONDS,new LinkedBlockingQueue<>(),  //数组有界队列Executors.defaultThreadFactory(), //默认的线程工厂new ThreadPoolExecutor.AbortPolicy());  //直接抛异常,默认异常}return pool;}
}

第二步就是定义一个线程任务,到时将任务丢到线程池里面,其代码如下,该任务实现Callable接口,每个线程插入10万条,每次批量插入100条数据,大概就是需要1000次

@Data
public class ArchiveTask implements Callable {private MongoTemplate mongoTemplate;public ArchiveTask(MongoTemplate mongoTemplate){this.mongoTemplate = mongoTemplate;}@Overridepublic Object call() throws Exception {List<Archive> list = new ArrayList<>();for (int i = 1; i <= 100000; i++) {Archive archive = new Archive();archive.setCategory("score");archive.setId(SnowflakeUtils.nextOrderId());archive.setParentId(SnowflakeUtils.nextOrderId());Map<String,String> map = new HashMap<>();StringBuilder sb = new StringBuilder();for (int j = 0; j < 15; j++) {sb.append(UUID.randomUUID());}map.put("key" + i, sb.toString());archive.setContent(JSON.toJSONString(map));list.add(archive);if (i%100 == 0){mongoTemplate.insertAll(list);list.clear();	//手动gc,100个对象没被引用会被回收list = new ArrayList<>();}}return null;}
}

最后定义一个测试类或者一个接口,我这边使用接口,部分代码如下,循环100次,就是会创建100个线程任务,随后将这个线程任务丢到线程池中,100乘以100000就是1千万条数据

@Resource
private MongoTemplate mongoTemplate;
static ThreadPoolExecutor threadPool = ThreadPoolUtil.getThreadPool();
@GetMapping("/add")
public void test(){for (int i = 0; i < 100; i++) {ArchiveTask archiveTask = new ArchiveTask(mongoTemplate);threadPool.submit(archiveTask);}log.info("数据添加完成");
}
3,一千万数据性能测试

mongodb性能测试,此时archive 集合中已有10134114条数据,平均每条数据大小674字节,1千多万条,此时的存储大小为5.5个g,索引的总大小为459m

接下来通过唯一索引查询一条数据,这里直接通过parentId查询一条数据,此时数据还是在不断插入的

db.archive.find({parentId:"2405291858848274156091867143"})

是的,如下图所示,1000多万条数据里面查询,只需要25ms即可将数据放回,当然这里没有在高流量的情况下进行压测。

在这里插入图片描述

4,两千万数据性能测试

此时archive集合来到了两千万条,每条数据和之前一样,平均大小是674字节,数据总大小来到了10.92G,内存大小12.65g,索引总大小是913m
在这里插入图片描述

接下来测试查询效率,依旧使用上面的这个parentId,由于设置的是parentId+category的联合唯一索引,接下来两个参数一起查

db.archive.find({parentId:"2405291858848274156091867143",category:"score"})

2000万的数据查询结果如下,只需要21ms,和上面的25ms慢了将近4ms,但是这4ms可以忽略

在这里插入图片描述

5,五千万数据性能测试

由于70G的磁盘容量已经只剩48G,因此在content字段将500字节的值调小,调整到150个字节,以便能插入更多数据。将上面的StringBuilder拼接的15个uuid改成1个uuid

map.put("key" + i,UUID.randomUUID().toString());

此时数据来到50245694条数据,每条数据平均大小372kb,总存储大小12.66g,内存中的总大小17.45g,索引大小目前只有2.8g

在这里插入图片描述

为了保证拿到的parentId是一次没有查询过的,手动的插入一批数据,手动单条插入20条数据,耗时600ms,在插入数据时会改变索引,插入数据会稍微慢些。此时的插入操作都是在多线程插入大量数据的时候测试的

db.archive.insertOne({parentId:"2024111222337",category:"score1",content:"cbasbsadhpasdbsaodgs"})
db.archive.insertOne({parentId:"2024111222337",category:"score2",content:"cbasbsadhpasdbsaodgs"})
....

此时第一次查询这条数据,共耗时153ms,共查出20条数据

在这里插入图片描述

再第二次查询之后,花费78ms,内部应该也是会将查询结果加入到缓存中,方便第二次查询

在这里插入图片描述

在上面的插入操作中由于会破坏到索引结构,因此耗时久一点。接下来看这个更新操作,

db.archive.updateOne({ parentId: "2024111222337",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

其结果如下,更新了一条数据,只花费了13毫秒的时间,因此更新操作速度是很快的。由于这里每一条数据都是唯一数据,因此不测试批量更新

在这里插入图片描述

最后测试删除数据,将这20条数据全部删除,总共花费18毫秒

在这里插入图片描述

6,一亿条数据性能测试

数据通过多线程+批量插入的方式来到一亿条,存储大小15.5g,索引长度是6g

db.archive.countDocuments()  //查询共有多少条数据
100082694

在这里插入图片描述

接下来往里面重新插入一部分数据,往里面插入20条数据,大概花费160多ms,插入数据会导致索引重构,所以耗时久一些,批量插入性能会更快。重新插入的数据可以保证这条数据没被查过,并且知道parentId是什么

db.archive.insertOne({parentId:"20240531101059",category:"score1",content:"abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy"})
....

接下来测试查询数据,只需要19ms

db.archive.find({parentId:"20240531101054"},{parentId:1,category:1}) //只返回部分字段
db.archive.find({parentId:"20240531101058"})

在这里插入图片描述

更新数据如下,只需要10ms

db.archive.updateOne({ parentId: "20240531101059",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

在这里插入图片描述

7,压测

以下压测都是数据达到1亿之后进行测试的,并且都是使用的2核4g的服务器

在1s内同时1000个线程插入数据,每个线程插入20条数据,中位数24,吞吐量391

在这里插入图片描述

在1s内10000个线程插入数据,也是每个线程批量插入20条数据,可以发现就算是2核4g这么垃圾的轻量级服务器,10000qps也是毫无压力的

在这里插入图片描述

插入数据会破坏索引,相对于修改和查询是更慢的,接下来测试1s内10000个线程同时执行增改查,吞吐量可以达到2251.7

在这里插入图片描述

部分代码片段如下,让10000个线程随机的执行增改查的操作,在1s内是毫无压力的

在这里插入图片描述

8,总结

通过上面的数据以及mongodb的响应来看,mongodb的性能还是非常不错的。看看GPT对这种数据的评价,gpt也认为mongodb是非常合适的。当然不管什么数据和业务,只要其本质是 json 数据,不管json内部结构多复杂,用mongodb都是非常合适的。mongodb还适合存一些订单数据,地理数据,大数据等等,其应用范围是非常广泛的

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/23504.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React+TS前台项目实战(一)-- 项目初始化配置及开此系列的初衷

文章目录 前言一、初始化项目二、基础配置1. 项目目录及说明如下2. TS版本使用Craco需注意 总结 前言 前面 后台管理系统实战 系列教程暂时告一段落了&#xff0c;想了解全局各种配置的可自行查看。本次教程将重点介绍React前台项目的实操&#xff0c;关于具体的配置&#xff…

龙迅LT8712X TYPE-C或者DP转HDMI加VGA输出,内置MCU,只是IIS以及4K60HZ分辨率

龙迅LT8712X描述&#xff1a; LT8712X是一种高性能的Type-C/DP1.2到HDMI2.0和VGA转换器&#xff0c;设计用于将USB Type-C源或DP1.2源连接到HDMI2.0和VGA接收器。LT8712X集成了一个DP1.2兼容的接收器&#xff0c;一个HDMI2.0兼容的发射机和一个高速三角机窝视频DAC。此外&…

Python 可变长参数的魔法:灵活函数设计的秘密

哈喽&#xff0c;大家好&#xff0c;我是木头左&#xff01; 什么是可变长参数&#xff1f; 在 Python 中&#xff0c;可变长参数允许你向函数传入任意数量的参数&#xff0c;而无需预先定义它们的个数。这为编写更加灵活和通用的函数提供了可能。可变长参数主要有两种形式&am…

记录某书请求返回406及响应{“code“:-1,“success“:false}

今天测试某个平台的爬虫时使用requests post请求正常写了个测试脚本把各种参数带上出来以后出现了406情况&#xff0c;和网站数据是完全一样的 以为是 X-S、X-T参接不对&#xff0c;但在postman里测试又是可以的成功&#xff0c;以为是检验了参数顺序&#xff0c;测试发现也没…

JavaSE基础语法合集

随着不断学习&#xff0c;我们已经走完了JavaSE基础语法的所有内容&#xff0c;博主的单独语法篇共十二篇&#xff0c;感兴趣的也可以去看看&#xff0c;内容基本一致&#xff0c;目录是重新排布的&#xff0c;数组和方法都在初识Java章节。 适合&#xff1a;老手复习和新手从零…

Linux下的Git应用及配置

1、卸载 2、安装 3、创建并初始化 4、配置 &#xff08;附加删除语句&#xff09; 5、查看&#xff08;tree .git/&#xff09; 6、增加和提交 7、打印日志 8、验证已操作工作

sc.tl.rank_genes_groups()问题

今天被问到了一个关于sc.tl.rank_genes_groups()的奇怪的问题 import scanpy as sc import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt # from CellDART import da_cellfraction # from CellDART.utils import random_mix from…

谷歌个人开发者账号“14+20”封测没通过?你可能忽视了这个细节

众所周知&#xff0c;在Google play平台如果使用个人开发者账号上架应用&#xff0c;在提审正式版应用前&#xff0c;需要满足20人连续封闭测试14天的要求&#xff0c;不少开发者在这个阶段遇到了问题&#xff0c;被谷歌认为没满足要求&#xff0c;从而不能上架应用。 为什么你…

国产开发板——香橙派Kunpeng Pro的上手初体验

开发板&#xff08;Development Board&#xff09;是一种特殊的电子产品&#xff0c;它的主要目的是为了帮助开发者快速地设计、测试和验证电子产品的硬件和软件设计。开发板通常提供了一个完整的硬件平台&#xff0c;包括微控制器、存储器、接口和其他外围设备&#xff0c;开发…

性能狂飙:SpringBoot应用优化实战手册

在数字时代&#xff0c;速度就是生命&#xff0c;性能就是王道&#xff01;《极速启航&#xff1a;SpringBoot性能优化的秘籍》带你深入SpringBoot的内核&#xff0c;探索如何打造一个飞速响应、高效稳定的应用。从基础的代码优化到高级的数据库连接池配置&#xff0c;再到前端…

【深度学习-第6篇】使用python快速实现CNN多变量回归预测(使用pytorch框架)

上一篇我们讲了使用CNN进行分类的python代码&#xff1a; Mr.看海&#xff1a;【深度学习-第5篇】使用Python快速实现CNN分类&#xff08;模式识别&#xff09;任务&#xff0c;含一维、二维、三维数据演示案例&#xff08;使用pytorch框架&#xff09; 这一篇我们讲CNN的多变…

OZON快蜗牛数据工具,OZON数据分析工具

在当今的电商时代&#xff0c;数据已经成为了商家们最宝贵的资产之一。无论是产品选品、市场定位&#xff0c;还是营销策略的制定&#xff0c;都离不开对数据的深入分析和精准把握。而在众多电商平台中&#xff0c;OZON以其独特的商业模式和庞大的用户群体&#xff0c;吸引了众…

【Elasticsearch】es基础入门-03.RestClient操作文档

RestClient操作文档 示例&#xff1a; 一.初始化JavaRestClient &#xff08;一&#xff09;引入es的RestHighLevelClient依赖 <!--elasticsearch--> <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest…

JVM垃圾收集器和性能调优

目标&#xff1a; 1.JVM垃圾收集器有哪几种&#xff1f; 2.CMS垃圾收集器回收步骤。 一、JVM常见的垃圾回收器 为什么垃圾回收的时候需要STW? 标记垃圾的时候&#xff0c;如果不STW&#xff0c;可能用户线程就会不停的产生垃圾。 1.1 单线程收集 Serial和SerialOld使用单…

山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(二十八)- 微服务(8)

目录 11.4 SpringAMQP 11.4.2 Work Queue工作队列 11.4.3 发布订阅模型 11.4.4 FanoutExchange(广播交换机) 11.4.5 DirectExchange(路由模式交换机) 11.4.6 TopicExchange 11.5 消息转换器 11.4 SpringAMQP 父工程引入AMQP依赖 <!--AMQP依赖&#xff0c;包含RabbitMQ…

接口自动化测试做到什么程度的覆盖算是合格的

接口自动化测试的覆盖程度是一个衡量测试质量与效率的重要指标&#xff0c;其“好”的标准并非绝对&#xff0c;而是根据项目特性和团队需求动态调整的结果。然而&#xff0c;有几个原则和实践可以帮助我们确定一个相对合理的覆盖范围&#xff0c;以及为何这些覆盖是必要的。 1…

鸿蒙全栈开发-一文读懂鸿蒙同模块不同模块下的UIAbility跳转详解

前言 根据第三方机构Counterpoint数据&#xff0c;截至2023年三季度末&#xff0c;HarmonyOS在中国智能手机操作系统的市场份额已经提升至13%。短短四年的时间&#xff0c;HarmonyOS就成长为仅次于安卓、苹果iOS的全球第三大操作系统。 因此&#xff0c;对于鸿蒙生态建设而言&a…

FatFs文件系统移植到MCU平台详细笔记经验教程

0、准备工作 在移植FatFs文件系统前&#xff0c;需要准备好一块开发板&#xff0c;和一张SD卡&#xff0c;且需要已经实现开发板正常的读写SD卡或其它硬件设备。 本文笔记教程中使用的硬件设备是STM32F407VET6开发板&#xff08;板载SD插槽&#xff09;&#xff0c;配备8G和32G…

C#知识|通过ADO.NET实现应用程序对数据库的查询操作。

哈喽,你好啊,我是雷工! 前边学习了通过ADO.NET实现C#应用程序对数据库的增、删、改操作。 接下来接着学习查询操作,以下为学习笔记。 查询返回有两种类型,一种是单行单列的单一结果,一种是结果集,首先了解查询结果是单行单列结果的写法。 01 查询返回单一结果 以前方的…

[AVL数四种旋转详细图解]

文章目录 一.右单旋二. 左单旋三. 右左双旋四. 左右双旋 一.右单旋 新节点插入较高左子树的左侧—左左&#xff1a;右单旋 由于在较高左子树的左侧插入一个节点后&#xff0c;左边插入导致30的平衡因子更新为-1&#xff0c;而60平衡因子更新为-2&#xff0c;此时不平衡&…