文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于保守度自适应优化的综合能源系统鲁棒灵活性评估》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是提出了一种基于保守度自适应优化的综合能源系统(Integrated Energy Systems, IES)鲁棒灵活性评估方法。该方法旨在评估IES为上级电力系统提供灵活性支持的潜力,并考虑了IES内部多元负荷不确定性的影响。下面是该论文的主要内容概述:

  1. 研究背景与意义:随着新能源发电的大量接入,电力系统对运行灵活性的需求日益增加。IES通过实现冷、热、电、气等多种能源的互补和灵活性需求的转换,展现出巨大的灵活性潜力。因此,准确评估IES的灵活性对电力系统的规划和运行至关重要。

  2. 现有研究的不足:现有研究多集中于IES内部灵活性供需匹配程度的评估,而对IES向上级电力系统提供灵活性支持潜力的评估不足。此外,多元负荷不确定性在IES灵活性评估中的影响也未得到充分考虑。

  3. 提出的方法:论文提出了一种基于保守度自适应优化的IES鲁棒灵活性评估方法。该方法首先建立IES灵活性的确定性评估模型,然后考虑多元负荷不确定性,改进传统鲁棒优化模型的保守度约束条件,并提出保守度参数自适应优化方法。

  4. 模型构建:建立了max-min-max和min-max-min二阶段鲁棒优化模型,分别针对IES外部电力需求区间的上、下界。利用KKT条件和McCormick松弛技术对子问题中的双层结构进行线性化处理,并采用列与约束生成(C&CG)算法将二阶段鲁棒优化模型分解为主问题和子问题进行迭代求解。

  5. 算例分析:通过一个园区型IES的案例,验证了评估模型和解决方法的有效性。考虑了多元负荷不确定性对IES灵活性的影响,并比较了不同保守度调节模型对评估结果的影响。

  6. 研究结论:提出的评估方法能够直观地描述IES的电力需求外特性,有效评估IES对上级电力系统的灵活性支持潜力。通过改进保守度调节模型,使评估结果更加符合实际情况,并能指导电力系统合理分配多元负荷保守度参数,控制IES灵活性评估的风险水平。

  7. 未来研究方向:论文指出,基于本文研究,进一步考虑区域型IES的网络运行约束及用户侧IES的相互耦合关系,实现对更大规模综合能源系统的灵活性评估将是后续研究的重点。

这篇论文对于理解和改进IES在电力系统中的灵活性评估具有重要意义,特别是在考虑多元负荷不确定性和优化保守度参数分配的情况下。

复现仿真的大致思路和程序表示如下:

仿真复现思路:

  1. 环境搭建

    • 安装Matlab R2018a或以上版本。
    • 确保Yalmip工具箱和Cplex求解器已正确安装并配置。
  2. 参数配置

    • 根据论文中的附表A1和A2,配置IES中各类供能设备和储能设备的参数,包括额定功率、功率下限、爬坡速率、转换效率等。
  3. 负荷数据准备

    • 根据论文中的多元负荷特性图,准备电、冷、热负荷的预测值和实际值数据,考虑±25%的预测偏差。
  4. 模型建立

    • 根据论文提出的基于保守度自适应优化的IES鲁棒灵活性评估方法,建立确定性评估模型和二阶段鲁棒优化模型。
  5. 保守度参数设置

    • 设定不同的保守度参数,包括整体保守度和电、冷、热负荷各自的保守度参数,并考虑自适应优化分配。
  6. 模型求解

    • 使用C&CG算法对模型进行求解,迭代求解主问题和子问题,直至收敛。
  7. 结果分析

    • 分析IES对外部电力需求区间的上、下界,评估IES的灵活性支持潜力。
  8. 不确定性分析

    • 考虑多元负荷不确定性对评估结果的影响,对比不同保守度调节模型下的仿真结果。

程序语言表示(伪代码):

% 安装Yalmip
install_Yalmip;% 设置Cplex求解器
Y = yalmip('cplex');
% 设备参数表
power_devices = [200, 20, 100, 0.35; % 燃气发电机200, 20, 100, 0.8;   % 余热锅炉200, 20, 100, 1.1;   % 余热吸收式制冷机500, 50, 250, 0.9;   % 电锅炉800, 80, 400, 2;     % 电制冷机500, 50, 250, 0.9;   % 燃气锅炉800, 80, 400, 2      % 直燃机
];% 储能设备参数表
storage_devices = [1000, 500, 0, 100, 250, 250, 0.95/0.95; % 储电设备
];
% 假设负荷数据为时间序列
load_forecast = ...; % 负荷预测值数组
load_actual = ...;   % 负荷实际值数组,可为load_forecast的扰动
% 确定性评估模型
function deterministic_model = build_deterministic_model(params, loads)% 根据论文描述建立模型...
end% 二阶段鲁棒优化模型
function robust_model = build_robust_model(params, loads, conservatism_levels)% 根据论文描述建立模型...
end
% 保守度参数设置
conservatism_levels = [0.9, 0.5, 0.85]; % 示例值,需根据自适应优化方法确定
% C&CG算法求解
function solutions = solve_with_ccg(robust_model)% 初始化求解器和迭代参数...while not converged% 解主问题...% 解子问题...% 更新迭代参数...end% 返回解
end
% 结果分析函数
function analyze_results(solutions)% 分析电力需求区间上、下界...
end
% 主程序
% 环境配置
setup_environment();% 参数配置
params = configure_parameters();% 负荷数据准备
loads = prepare_load_data();% 保守度参数设置
conservatism_levels = set_conservatism_parameters();% 建立模型
deterministic_model = build_deterministic_model(params, loads);
robust_model = build_robust_model(params, loads, conservatism_levels);% 求解模型
solutions = solve_with_ccg(robust_model);% 结果分析
analyze_results(solutions);% 不确定性分析
uncertainty_analysis(solutions, conservatism_levels, load_actual);

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/22602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标检测——铁轨表面缺陷数据集(一)

引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …

python中操作文件的实践(2)

上一篇我总结了python对于文件操作的一些常用方法,这一篇主要记录对文件操作的一些常用方法 1.将文件中的内容进行替换 import os with open(python1.txt,encodingutf-8) as f1,\open(python1_bak.txt,encodingutf-8,modew) as f2:for line in f1:new_lineline.re…

目标检测——叶片计数数据集

引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …

R语言绘图 --- 桑基图(Biorplot 开发日志 --- 5)

「写在前面」 在科研数据分析中我们会重复地绘制一些图形,如果代码管理不当经常就会忘记之前绘图的代码。于是我计划开发一个 R 包(Biorplot),用来管理自己 R 语言绘图的代码。本系列文章用于记录 Biorplot 包开发日志。 相关链接…

VUE3 学习笔记(14):VUE3 组合式API与传统选项式API用法

VUE3相较VUE2的亮点很多,作为后端开发置于前端最大的感受就是组合式API(之前采用的是选项式API);它使得整体更简洁易用,但值得提醒的是官方并未强制要求二选一,尽管如此在同一个项目中还是不要出现两种写法。 选项式AP…

【通知】上市公司嵌入式工程师带队授课,成品展示~~

1,成品展示: 2,产品需求: 设计一款无线CAN转发器,由若干个终端组成,若干个终端之间可以将接收到的CAN数据通过无线的方式转发出去,在复杂的条件下,传输距离不低于200m。 该CAN转发器…

vscode+latex设置跳转快捷键

安装参考 https://blog.csdn.net/Hacker_MAI/article/details/130334821 设置默认recipe ctrl P 打开设置,搜索recipe 也可以点这里看看有哪些配置 2 设置跳转快捷键

IIC信号质量测试、时序测试详解

IIC 时序图 信号质量测试 1、vIL: 低输入电平。 2、vIH: 高输入电平。 3、vhys: 施密特触发器输入的滞后。 4、vOL1: VDD>2V时&#xff0c;低电平输出电压&#xff08;漏极开路或集电极开路&#xff09;。 5、vOL3: VDD<2V时&#xff0c;低电平输出电压&#xff08;漏极开…

JMeter Plugins Manager---插件安装

参考文章&#xff1a;https://blog.51cto.com/u_14126/6291032 需求&#xff1a; 安装【jpgc - Standard Set】插件 常用插件&#xff1a; 点击下载–报错如下&#xff1a; Failed to apply changes:Cannotapplychanges:Haveno write accessforJMeterdirectories,notpossib…

Python版《消消乐》,附源码

曾经风靡一时的消消乐&#xff0c;至今坐在地铁上都可以看到很多人依然在玩&#xff0c;想当年我也是大军中的一员&#xff0c;那家伙&#xff0c;吃饭都在玩&#xff0c;进入到高级的那种胜利感还是很爽的&#xff0c;连续消&#xff0c;无限消&#xff0c;哈哈&#xff0c;现…

0基础学习区块链技术——去中心化

“去中心化”是区块链技术的核心。那么我们该如何理解这个概念呢&#xff1f; 我们可以假想在一次现实转账中&#xff0c;有哪些“中心化”的行为&#xff1a; 判断余额是否足够。即判断转出的钱是否少于账户里剩余的钱&#xff0c;能够判断的是账户所在的银行。 如果余额足够…

读AI未来进行式笔记03自然语言处理技术

1. AI伙伴 1.1. 作为AI能力的集大成者&#xff0c;AI伙伴融合了各种复杂的AI技术 1.2. 人类唯一可能超越AI的领域&#xff0c;只可能在机器无法触及之处&#xff0c;那是属于人类感性与直觉的领域 1.3. 要读懂人类&#xff0c;需要漫长而平缓的学习过程 1.4. AI塑造了我们&…

I.MX RT1170之MIPI CSI摄像头初始化和显示流程详解

在上一篇文章I.MX RT1170之MIPI DSI初始化和显示流程详解中&#xff0c;我们介绍了RT1170单片机中MIPI DSI显示屏初始化和显示的详细步骤&#xff0c;那这一节就来介绍MIPI的另一个接口应用&#xff1a;摄像头CSI的初始化和配置流程。 对于摄像头来说&#xff0c;一般我们还要…

Adobe XD最新版号查询,如何使用?

Adobe XD是Adobe家推出的基于矢量的原型设计合作工具&#xff0c;被业界视为应对Sketch的“对抗”产品。Adobe XD不同于Sketch的系统限制&#xff0c;灵活性比较高&#xff0c;Windows和Mac都可以使用。自2017年推出以来&#xff0c;Adobe XD版经历了多次更新&#xff0c;这篇文…

Android RelativeLayout Rtl布局下的bug:paddingStart会同时作用于左右内边距

问题现象 如上图&#xff0c;只是设置了paddingStart&#xff0c;在RTL布局下&#xff0c;左右都产生了10dp的间距。其他布局如LinearLayout&#xff0c;FrameLayout则没有这个问题。 private void positionAtEdge(View child, LayoutParams params, int myWidth) {if (isLayou…

tensorrt-llm与vllm的量化性能比较

准备部署lora微调好的语言大模型&#xff0c;有tensorrt-llm和vllm两种加速策略可选&#xff0c;而量化策略也有llm.int8&#xff0c;gptq&#xff0c;awq可用&#xff0c; 怎样的组合才能获得最佳精度与速度呢&#xff0c;这是个值得探讨的问题&#xff0c;本文以llama-factor…

代理记账公司的五大问题及其解决方案

代理记账公司是现代企业管理中不可或缺的一部分&#xff0c;它为企业的日常运营提供了专业、高效的服务&#xff0c;随着行业的发展和竞争的加剧&#xff0c;代理记账公司的面临的问题也日益突出&#xff0c;这些问题主要表现在以下几个方面&#xff1a; 业务流程不规范 许多代…

【前端】display:none和visibility:hidden两者的区别

&#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。公粽号&#xff1a;洲与AI。 &#x1f913; 欢迎大家关注我的专栏&#xff0c;我将分享Web前后端开发、…

C语言 | Leetcode C语言题解之第132题分割回文串II

题目&#xff1a; 题解&#xff1a; int minCut(char* s) {int n strlen(s);bool g[n][n];memset(g, 1, sizeof(g));for (int i n - 1; i > 0; --i) {for (int j i 1; j < n; j) {g[i][j] (s[i] s[j]) && g[i 1][j - 1];}}int f[n];for (int i 0; i <…

YOLOv8改进 | Conv篇 | 利用YOLOv10提出的C2fUIB魔改YOLOv8(附代码 + 完整修改教程)

一、本文介绍 本文给大家带来的改进机制是利用YOLOv10提出的C2fUIB模块助力YOLOv8进行有效涨点&#xff0c;其中C2fUIB模块所用到的CIB模块是一种紧凑的倒置块结构&#xff0c;它采用廉价的深度卷积进行空间混合&#xff0c;并采用成本效益高的点卷积进行通道混合。本文针对该…