文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于保守度自适应优化的综合能源系统鲁棒灵活性评估》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是提出了一种基于保守度自适应优化的综合能源系统(Integrated Energy Systems, IES)鲁棒灵活性评估方法。该方法旨在评估IES为上级电力系统提供灵活性支持的潜力,并考虑了IES内部多元负荷不确定性的影响。下面是该论文的主要内容概述:

  1. 研究背景与意义:随着新能源发电的大量接入,电力系统对运行灵活性的需求日益增加。IES通过实现冷、热、电、气等多种能源的互补和灵活性需求的转换,展现出巨大的灵活性潜力。因此,准确评估IES的灵活性对电力系统的规划和运行至关重要。

  2. 现有研究的不足:现有研究多集中于IES内部灵活性供需匹配程度的评估,而对IES向上级电力系统提供灵活性支持潜力的评估不足。此外,多元负荷不确定性在IES灵活性评估中的影响也未得到充分考虑。

  3. 提出的方法:论文提出了一种基于保守度自适应优化的IES鲁棒灵活性评估方法。该方法首先建立IES灵活性的确定性评估模型,然后考虑多元负荷不确定性,改进传统鲁棒优化模型的保守度约束条件,并提出保守度参数自适应优化方法。

  4. 模型构建:建立了max-min-max和min-max-min二阶段鲁棒优化模型,分别针对IES外部电力需求区间的上、下界。利用KKT条件和McCormick松弛技术对子问题中的双层结构进行线性化处理,并采用列与约束生成(C&CG)算法将二阶段鲁棒优化模型分解为主问题和子问题进行迭代求解。

  5. 算例分析:通过一个园区型IES的案例,验证了评估模型和解决方法的有效性。考虑了多元负荷不确定性对IES灵活性的影响,并比较了不同保守度调节模型对评估结果的影响。

  6. 研究结论:提出的评估方法能够直观地描述IES的电力需求外特性,有效评估IES对上级电力系统的灵活性支持潜力。通过改进保守度调节模型,使评估结果更加符合实际情况,并能指导电力系统合理分配多元负荷保守度参数,控制IES灵活性评估的风险水平。

  7. 未来研究方向:论文指出,基于本文研究,进一步考虑区域型IES的网络运行约束及用户侧IES的相互耦合关系,实现对更大规模综合能源系统的灵活性评估将是后续研究的重点。

这篇论文对于理解和改进IES在电力系统中的灵活性评估具有重要意义,特别是在考虑多元负荷不确定性和优化保守度参数分配的情况下。

复现仿真的大致思路和程序表示如下:

仿真复现思路:

  1. 环境搭建

    • 安装Matlab R2018a或以上版本。
    • 确保Yalmip工具箱和Cplex求解器已正确安装并配置。
  2. 参数配置

    • 根据论文中的附表A1和A2,配置IES中各类供能设备和储能设备的参数,包括额定功率、功率下限、爬坡速率、转换效率等。
  3. 负荷数据准备

    • 根据论文中的多元负荷特性图,准备电、冷、热负荷的预测值和实际值数据,考虑±25%的预测偏差。
  4. 模型建立

    • 根据论文提出的基于保守度自适应优化的IES鲁棒灵活性评估方法,建立确定性评估模型和二阶段鲁棒优化模型。
  5. 保守度参数设置

    • 设定不同的保守度参数,包括整体保守度和电、冷、热负荷各自的保守度参数,并考虑自适应优化分配。
  6. 模型求解

    • 使用C&CG算法对模型进行求解,迭代求解主问题和子问题,直至收敛。
  7. 结果分析

    • 分析IES对外部电力需求区间的上、下界,评估IES的灵活性支持潜力。
  8. 不确定性分析

    • 考虑多元负荷不确定性对评估结果的影响,对比不同保守度调节模型下的仿真结果。

程序语言表示(伪代码):

% 安装Yalmip
install_Yalmip;% 设置Cplex求解器
Y = yalmip('cplex');
% 设备参数表
power_devices = [200, 20, 100, 0.35; % 燃气发电机200, 20, 100, 0.8;   % 余热锅炉200, 20, 100, 1.1;   % 余热吸收式制冷机500, 50, 250, 0.9;   % 电锅炉800, 80, 400, 2;     % 电制冷机500, 50, 250, 0.9;   % 燃气锅炉800, 80, 400, 2      % 直燃机
];% 储能设备参数表
storage_devices = [1000, 500, 0, 100, 250, 250, 0.95/0.95; % 储电设备
];
% 假设负荷数据为时间序列
load_forecast = ...; % 负荷预测值数组
load_actual = ...;   % 负荷实际值数组,可为load_forecast的扰动
% 确定性评估模型
function deterministic_model = build_deterministic_model(params, loads)% 根据论文描述建立模型...
end% 二阶段鲁棒优化模型
function robust_model = build_robust_model(params, loads, conservatism_levels)% 根据论文描述建立模型...
end
% 保守度参数设置
conservatism_levels = [0.9, 0.5, 0.85]; % 示例值,需根据自适应优化方法确定
% C&CG算法求解
function solutions = solve_with_ccg(robust_model)% 初始化求解器和迭代参数...while not converged% 解主问题...% 解子问题...% 更新迭代参数...end% 返回解
end
% 结果分析函数
function analyze_results(solutions)% 分析电力需求区间上、下界...
end
% 主程序
% 环境配置
setup_environment();% 参数配置
params = configure_parameters();% 负荷数据准备
loads = prepare_load_data();% 保守度参数设置
conservatism_levels = set_conservatism_parameters();% 建立模型
deterministic_model = build_deterministic_model(params, loads);
robust_model = build_robust_model(params, loads, conservatism_levels);% 求解模型
solutions = solve_with_ccg(robust_model);% 结果分析
analyze_results(solutions);% 不确定性分析
uncertainty_analysis(solutions, conservatism_levels, load_actual);

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/22602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标检测——铁轨表面缺陷数据集(一)

引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …

16.1 调试-日志、打印数据

1. 日志 日志是指程序执行过程中记录的信息。 日志并非专为报告BUG而设,但可作为BUG发生时诊断故障的基础设施。日志通常采用文本文件的形式,便于直接阅读,以查找特定的事件或发生错误的原因 标准库的log包让应用程序能够将日志写入终端或…

python中操作文件的实践(2)

上一篇我总结了python对于文件操作的一些常用方法,这一篇主要记录对文件操作的一些常用方法 1.将文件中的内容进行替换 import os with open(python1.txt,encodingutf-8) as f1,\open(python1_bak.txt,encodingutf-8,modew) as f2:for line in f1:new_lineline.re…

Android驱动开发前的准备

查看Linux内核版本 Android系统中的“ 设备 ” > “关于手机 ” 中查看当前Android系统所采用的Linux内核版本 使用uname命令查看Linux内核版本 # Ubuntu下 , Linux内核的版本 uname -a查看proc/version文件获取Linux内核版本 cat /proc/version/proc不是普通的文件系统…

目标检测——叶片计数数据集

引言 亲爱的读者们,您是否在寻找某个特定的数据集,用于研究或项目实践?欢迎您在评论区留言,或者通过公众号私信告诉我,您想要的数据集的类型主题。小编会竭尽全力为您寻找,并在找到后第一时间与您分享。 …

R语言绘图 --- 桑基图(Biorplot 开发日志 --- 5)

「写在前面」 在科研数据分析中我们会重复地绘制一些图形,如果代码管理不当经常就会忘记之前绘图的代码。于是我计划开发一个 R 包(Biorplot),用来管理自己 R 语言绘图的代码。本系列文章用于记录 Biorplot 包开发日志。 相关链接…

VUE3 学习笔记(14):VUE3 组合式API与传统选项式API用法

VUE3相较VUE2的亮点很多,作为后端开发置于前端最大的感受就是组合式API(之前采用的是选项式API);它使得整体更简洁易用,但值得提醒的是官方并未强制要求二选一,尽管如此在同一个项目中还是不要出现两种写法。 选项式AP…

详解大模型微调数据集构建方法(持续更新)

大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算…

【通知】上市公司嵌入式工程师带队授课,成品展示~~

1,成品展示: 2,产品需求: 设计一款无线CAN转发器,由若干个终端组成,若干个终端之间可以将接收到的CAN数据通过无线的方式转发出去,在复杂的条件下,传输距离不低于200m。 该CAN转发器…

vscode+latex设置跳转快捷键

安装参考 https://blog.csdn.net/Hacker_MAI/article/details/130334821 设置默认recipe ctrl P 打开设置,搜索recipe 也可以点这里看看有哪些配置 2 设置跳转快捷键

leetcode7 整数翻转

给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)。 示例 1: 输入…

[AIGC] @Component与@Bean的区别详解

在Spring框架中,Component和Bean常常被用来进行依赖注入,让Spring自身管理对象的生命周期。然而,尽管它们将目标类标记为Spring容器中的构件,但是二者的应用场景和工作方式存在重要的区别。 文章目录 ComponentBean主要区别 Compo…

IIC信号质量测试、时序测试详解

IIC 时序图 信号质量测试 1、vIL: 低输入电平。 2、vIH: 高输入电平。 3、vhys: 施密特触发器输入的滞后。 4、vOL1: VDD>2V时&#xff0c;低电平输出电压&#xff08;漏极开路或集电极开路&#xff09;。 5、vOL3: VDD<2V时&#xff0c;低电平输出电压&#xff08;漏极开…

【Vue】水果购物车-基本渲染

在Vue中&#xff0c;如果想要实现全选反选功能&#xff0c;通常使用计算属性 完整代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge&qu…

Spring中的事务是如何实现的

Spring里的事务管理&#xff0c;你可以想象成是银行里的一个业务办理过程。就像你在银行办转账时&#xff0c;要么全部完成&#xff08;钱从一个账户转到另一个账户&#xff09;&#xff0c;要么什么都不变&#xff08;如果中间出问题了&#xff0c;钱不会丢失&#xff09;。Sp…

JMeter Plugins Manager---插件安装

参考文章&#xff1a;https://blog.51cto.com/u_14126/6291032 需求&#xff1a; 安装【jpgc - Standard Set】插件 常用插件&#xff1a; 点击下载–报错如下&#xff1a; Failed to apply changes:Cannotapplychanges:Haveno write accessforJMeterdirectories,notpossib…

Element Plus使用总结

一、引言 Element Plus是一套为开发者、设计师和产品经理准备的基于Vue 3的组件库&#xff0c;它继承了Element UI的优点&#xff0c;同时进行了诸多改进和优化&#xff0c;使其更加适用于现代Web应用的开发。以下是对Element Plus使用的总结。 二、安装与引入 安装&#xf…

JavaScript 中创建函数的多种方式

在 JavaScript 中&#xff0c;可以通过多种方式创建函数。每种方式都有其特定的用途、优点和缺点&#xff0c;以及适用的使用场景。以下是几种常见的创建函数的方式及其详细说明。 1. 函数声明&#xff08;Function Declaration&#xff09; 示例 function add(a, b) {retur…

Python版《消消乐》,附源码

曾经风靡一时的消消乐&#xff0c;至今坐在地铁上都可以看到很多人依然在玩&#xff0c;想当年我也是大军中的一员&#xff0c;那家伙&#xff0c;吃饭都在玩&#xff0c;进入到高级的那种胜利感还是很爽的&#xff0c;连续消&#xff0c;无限消&#xff0c;哈哈&#xff0c;现…

60、最大公约数

最大公约数 题目描述 给定n对正整数ai,bi&#xff0c;请你求出每对数的最大公约数。 输入格式 第一行包含整数n。 接下来n行&#xff0c;每行包含一个整数对ai,bi。 输出格式 输出共n行&#xff0c;每行输出一个整数对的最大公约数。 数据范围 1 ≤ n ≤ 1 0 5 , 1≤n≤…