c语言:自定义类型(枚举、联合体)

前言:

c语言中中自定义类型不仅有结构体,还有枚举、联合体等类型,上一期我们详细讲解了结构体的初始化,使用,传参和内存对齐等知识,这一期我们来介绍c语言中的其他自定义类型枚举和联合体的知识。

1.位段

    在讲枚举,联合体之前,我们补充上一期结构体剩下的一点知识——位段。

1.1什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。

2.位段的成员名后边有一个冒号和一个数字。

比如:

struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};

A就是一个位段类型。

那位段A的大小是多少?  

printf("%d\n", sizeof(struct A));

这就不得不介绍以上的代码是什么意思了,_a后面的2表示我们只给_a 变量分配两个比特位的空间,以此类推,后面的5、10、30都是给各自变量分配了该数量的比特位的空间,这是为什么呢?为什么要给一个变量这么小的空间呢?因为有时我们发现有的变量只固定表示一些很小的数值,如_a变量,我们如果只需要它表示0-3的值,给它分配两个比特位是完全够的,所以使用位段是为了节省空间的做法,在某些变量只表示固定范围的数值时,我们就用位段限制它的空间,尽可能去节省空间,那么我们来看这个结构体的空间大小吧:

四个int类型占8个字节,平均占2个字节,在不超出数值表示范围的情况下,我们用位段省下了一半的空间。

1.2 位段的内存分配 

    既然位段能节省空间,我们就不得不解释位段是如何分配内存的:

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们来看一段代码:

//一个例子
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

我们给a、b、c、d、四个变量分别分配了3,4,5,4个比特位,3+4+5+4=16,它们加起来占16个比特位,是不是意味着S占16÷8=2个字节呢?我们计算一下S所占的空间:

出乎我们意料,它占了三个字节,这是因为位段的存储规则是不确定的。

如果这个结构体占三个字节,那么它内部是这样存储的:

因为a占3个比特位,b占四个比特位,加起来不超过一个字节,所以它们被放在同一个字节内,而c占5个比特位,字节1空间不够,所以被放在了字节2,此时字节2还剩3个比特位,d占四个比特位,显然字节2放不下,又开辟了字节3把d放在里面,剩下一个字节的空间就是这样丢失的。

 1.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。

总结

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

2.枚举

  枚举也是c语言中自定义类型的一种,那么枚举是什么呢?

枚举顾名思义就是一一列举。

把可能的取值一一列举。

比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

月份有12个月,也可以一一列举。

这里就可以使用枚举了。

2.1枚举类型的定义

相比于结构体的关键字为struct,枚举也有自己的关键字:enum,了解了它的关键字,我们来看枚举的应用实例:如我们要表示一周七天,我们要表示性别,三原色

enum Day//星期
{Mon,Tues,Wed,Thur,Fri,Sat,Sun
};
enum Sex//性别
{MALE,FEMALE,SECRET
};
enum Color//颜色
{RED,GREEN,BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。

{}中的内容是枚举类型的可能取值,也叫枚举常量

这些可能取值都是有值的,默认从0开始,依次递增1,什么意思呢?如我们的Color类型里面的从头开始为RED,那么它的值就是0,相应的,GREED的值为1,BLUE的值为2,当然在声明枚举类型的时候也可以赋初值。

enum Color//颜色
{RED=1,GREEN=2,BLUE=4
};

2.2枚举类型的优点 

为什么要使用枚举?

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点:

1. 增加代码的可读性和可维护性

2. 和#define定义的标识符比较枚举有类型检查,更加严谨。

3. 便于调试

4. 使用方便,一次可以定义多个常量

3.联合体(共用体)

3.1联合类型的定义

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体),关键字为union。

比如:

//联合类型的声明
union Un
{char c;int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

3.2联合体的特点 

 联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。

问:

union Un
{int i;char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%p\n", &(un.i));
printf("%p\n", &(un.c));

首先我们来分析一下,因为我们联合体的特点是变量之间共用一块空间,所以i的地址和c的地址是同一块,那么它们&i和&c的结果是一样的:

很显然,我们的分析是正确的。

3.3联合大小的计算

联合体占多少空间,有两个规则:

1.联合的大小至少是最大成员的大小。

2.当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

比如:

union Un1
{char c[5];int i;
};
union Un2
{short c[7];int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));

从Un1开始,它的内部定义了一个5个元素的char类型的数组,长度为5个字节,那是否说明它的内存就是5个字节呢?我们回到上面内存规则的第二条—— 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍,很显然5不是4的整数倍,所以我们扩展到了8,那么8就是它所占的字节数:

结果完全正确,那么Un2呢,short类型占2个字节,我们定义了一个7个变量的short类型的数组,占14个字节,又创建了一个int类型的变量,考虑到联合体内存共用的特性,结果肯定不为14+4,我们要考的还是第二条对齐的规则,14不是4的整数倍,由14扩展到了16:

怎么样,是不是对联合体内存的规则有一定的了解了呢。

3.4联合体的实际应用 

    联合体有很多作用,我们之前讲过大小端字节序的概念,还讲了设计一个程序判断当前环境是大端还是小端,学了联合体之后,我们使用联合体也能设计这样的程序且简单,清晰明了:

union Un
{char c;int i;
};
int main()
{union Un un = { 0 };un.i = 1;if (un.c == 1){printf("小端\n");}else{printf("大端\n");}return 0;
}

我们当前是小端字节序,来看结果吧:

 

是不是很神奇呢。

到这里我们自定义类型的的内容就到此结束了,各位友友读到这里留下宝贵的三连和评论吧,有不足之处望各位佬佬私信和我交流!!! 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/22141.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务:Rabbitmq利用jackson序列化消息为Json发送并接收

消息序列化 Spring默认会把你发送的消息通过JDK序列化为字节发送给MQ&#xff0c;接收消息的时候&#xff0c;再把字节反序列化为Java对象。 我们可以配置JSON方式来序列化&#xff0c;这样体积更小&#xff0c;可读性更高。 引入依赖&#xff1a; <dependency><g…

灯珠对LED显示屏性能的影响

LED显示屏作为现代显示技术的重要组成部分&#xff0c;广泛应用于广告、信息发布、交通指示等领域。灯珠作为LED显示屏的核心组件&#xff0c;对其性能有着决定性的影响。本文将从八个关键方面探讨灯珠对LED显示屏性能的影响。 1. 视角 LED显示屏的视角由灯珠的视角决定。户外显…

UFS协议—新手快速入门(二)【5-6】

目录 五、UFS协议栈 六、UFS技术演进与详解 1、UFS应用层 设备管理器 任务管理器 2、UFS传输层 3、UFS互联层 UFS协议—新手快速入门&#xff08;一&#xff09;【1-4】 五、UFS协议栈 UFS&#xff08;Universal Flash Storage&#xff09;协议是针对固态存储设备&…

渡众机器人自动驾驶小车运行Autoware 实现港口物流运输

Autoware 是一个开源的自动驾驶软件堆栈&#xff0c;提供了丰富的功能和模块&#xff0c;用于实现自动驾驶车辆的感知、定位、规划和控制等功能。北京渡众机器人公司将多款自动驾驶小车在多场景运行Autoware &#xff0c;它可以实现以下功能&#xff1a; 1. 感知&#xff1a;利…

Spark的性能调优——RDD

前言 RDD 是 Spark 对于分布式数据集的抽象&#xff0c;每一个 RDD 都代表着一种分布式数据形态。比如 lineRDD&#xff0c;它表示数据在集群中以行&#xff08;Line&#xff09;的形式存在&#xff1b;而 wordRDD 则意味着数据的形态是单词&#xff0c;分布在计算集群中。 参…

数据挖掘综合案例-家用热水器用户行为分析与事件识别

文章目录 1. 背景与挖掘目标2. 分析方法与过程3. 数据分析3.1 数据探索分析3. 2 数据预处理1. 属性约束2. 划分用水事件3. 确定单次用水事件时长阈值4. 属性构造5.筛选候选洗浴事件 3.3 模型构建3.4 模型检验 4. 思考总结 1. 背景与挖掘目标 随着国内大家电品牌的进入和国外品…

了解CAN功能

了解CAN功能&#xff0c;学习CAN功能&#xff0c;理解CAN和串口的区别&#xff0c;以及它和RS485的相似之处。 1、“多主机”特性 在CAN网络通讯中&#xff0c;无需其它设备同意&#xff0c;每个CAN设备都可以主动向外发送数据&#xff0c;且所有设备都会收到数据&#xff0c…

【面试干货】 非关系型数据库(NoSQL)与 关系型数据库(RDBMS)的比较

【面试干货】 非关系型数据库&#xff08;NoSQL&#xff09;与 关系型数据库&#xff08;RDBMS&#xff09;的比较 一、引言二、非关系型数据库&#xff08;NoSQL&#xff09;2.1 优势 三、关系型数据库&#xff08;RDBMS&#xff09;3.1 优势 四、结论 &#x1f496;The Begin…

孵化器补贴政策提问模板

对于一些需要创业的人来说&#xff0c;找场地是非常非常难的&#xff0c;一个好的场地能够提高创业的成功率&#xff0c;下面这些内容对于孵化器产业园的政策有一个好的提问&#xff0c;可以帮助你们了解这个孵化器合不合适。需要创业的人可以收藏 某孵化器政策示例 提问模板 …

【竞技宝】欧洲杯:德国被乌克兰逼平,27脚射门仍难得分!

欧洲杯前的热身赛已经全面开启,东道主德国队算是打响了热身赛的第一枪,只可惜他们在主场0比0被乌克兰逼平。整场比赛,德国队都占据明显优势,全场比赛轰出27脚射门,可是却无法实现破门。这个时候德国球迷似乎回想到了前两届世界大赛,球队被“锋无力”支配的恐惧。 本场比赛德国队…

如何制作Peppol文件?

Peppol (Pan-European Public Procurement Online) 是一种用于跨境电子采购的标准协议和网络。它允许企业和政府机构以电子方式交换文件&#xff0c;如电子发票、订单和发货单。如果你需要制作Peppol文件&#xff0c;可以参考如下步骤&#xff1a; 准备必要工具和资源 1.Pepp…

Serif Affinity 2.5 (macOS, Windows) - 专业创意软件

Serif Affinity 2.5 (macOS, Windows) - 专业创意软件 Affinity Designer 2, Affinity Photo 2, Affinity Publisher 2 请访问原文链接&#xff1a;Serif Affinity 2.5 (macOS, Windows) - 专业创意软件&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主…

【第二节】C/C++数据结构之线性表

目录 一、线性表基本说明 1.1 基本概念 1.2 抽象数据类型 1.3 存储结构 1.4 插入与删除的区别 1.5 顺序存储和链式存储的优缺点 二、链表 2.1 基本概念 2.2 抽象数据类型 2.3 单链表的定义 2.4 单链表的基本操作 2.5 单链表模板形式的类定义与实现 三、单向循环链…

成功解决“ModuleNotFoundError: No module named ‘tensorflow_datasets‘”错误的全面指南

成功解决“ModuleNotFoundError: No module named ‘tensorflow_datasets’”错误的全面指南 在Python编程和深度学习项目中&#xff0c;tensorflow_datasets&#xff08;通常简称为tfds&#xff09;是一个非常重要的库&#xff0c;它提供了大量现成的数据集&#xff0c;方便…

终于来啦!Stable Diffusion 3将在6月12日正式开源

6月3日晚&#xff0c;著名开源大模型平台Stability AI的联合首席执行官Christian Laforte&#xff0c;在AMD的产品发布会上宣布&#xff0c;文生图模型 Stable Diffusion 3将于6月12日在Hugging Face开源权重。 本次开源的是Stable Diffusion 3的Medium模型&#xff0c;有20亿…

武汉盛势启创科技携手三品软件 EDM系统助力企业图文档数字化

客户简介 武汉盛势启创科技有限公司&#xff08;以下简称“盛世启创”&#xff09;是一家专注于新能源汽车零部件领域的科技型企业&#xff0c;其主要业务涵盖新能源汽车三电系统智能传感器、智能座舱及线控底盘控制器的芯片开发、硬件设计、嵌入式系统开发。以及相关产品的生产…

C++第二十三弹---深入理解STL中list的使用

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1、list的介绍 2、list的使用 2.1、构造函数 2.2、赋值操作符重载 2.3、迭代器使用 2.4、容量操作 2.5、元素访问 2.6、修改操作 2.7、其…

从0开始学人工智能测试节选:Spark -- 结构化数据领域中测试人员的万金油技术(三)

分布式计算原理 分布式计算的原理总结一句话就是&#xff1a;分而治之。 把数据分片&#xff0c;存在不同的机器中&#xff0c;解决数据存储的压力。客户端和服务端之间通过相关协议来自动的完成在不同的机器之间进行数据的存取&#xff0c;用户并不感知数据的物理存储结构。 用…

UIKit之App界面Demo

需求 实现简单的APP界面 功能&#xff1a; 实现滚动实现上层、下层横栏滚动时穿透效果&#xff08;永远浮在表面&#xff0c;不跟着滚动&#xff09;。暂用UIView代替&#xff0c;还没学Bar。 分析&#xff1a; 知识点&#xff1a; 实现鼠标拖动的上下滚动&#xff1a;当…

小红书前端2轮面试期望22K,全程问低代码设计

一面&#xff08;通过&#xff09; 1、好&#xff0c;那我们开始把&#xff0c;先简单介绍一下自己的一个经历&#xff0c;以及自己有亮点的项目&#xff1f;balabala 2、你可以这样介绍&#xff1a;在这里边主要负责哪几个项目&#xff0c;哪些项目是比较有亮点的&#xff0…