计算机网络⑩ —— Linux系统如何收发网络包

  • 转载于小林coding:https://www.xiaolincoding.com/network/1_base/how_os_deal_network_package.html

1. OSI七层模型

  • 应用层,负责给应用程序提供统一的接口;
  • 表示层,负责把数据转换成兼容另一个系统能识别的格式;
  • 会话层,负责建立、管理和终止表示层实体之间的通信会话;
  • 传输层,负责端到端的数据传输;
  • 网络层,负责数据的路由、转发、分片;
  • 数据链路层,负责数据的封帧和差错检测,以及 MAC 寻址;
  • 物理层,负责在物理网络中传输数据帧;- 应用层,负责给应用程序提供统一的接口;

2. 数据传输过程

在这里插入图片描述

  • 传输层,给应用数据前面增加了 TCP 头;
  • 网络层,给 TCP 数据包前面增加了 IP 头;
  • 网络接口层,给 IP 数据包前后分别增加了帧头和帧尾;
  • 数据链路层中并不能传输任意大小的数据包,所以在以太网中,规定了最大传输单元(MTU)是 1500 字节,也就是规定了单次传输的最大 IP 包大小
    • 当网络包超过 MTU 的大小,就会在网络层分片,以确保分片后的 IP 包不会超过 MTU 大小
    • 如果 MTU 越小,需要的分包就越多,那么网络吞吐能力就越差
    • 如果 MTU 越大,需要的分包就越少,那么网络吞吐能力就越好

3. Linux 网络协议栈

  • 应用程序需要通过系统调用,来跟 Socket 层进行数据交互;
  • Socket 层的下面就是传输层、网络层和网络接口层;
  • 最下面的一层,则是网卡驱动程序和硬件网卡设备;

在这里插入图片描述

4. Linux 接收网络包的流程

  • 网卡是计算机里的一个硬件,专门负责接收和发送网络包,当网卡接收到一个网络包后,会通过 DMA 技术,将网络包写入到指定的内存地址,也就是写入到 Ring Buffer ,这个是一个环形缓冲区,接着就会告诉操作系统这个网络包已经到达。
  • 告知操作系统网络包已到达的方式:
    • 触发中断:每当网卡收到一个网络包,就触发一个中断告诉操作系统
      • 问题:在高性能网络场景下,网络包的数量会非常多,那么就会触发非常多的中断,CPU收到中断后会先去处理这件事,因此会影响系统的整体性能
    • NAPI机制:混合「中断和轮询」的方式来接收网络包,当有网络包到达时,会通过 DMA 技术,将网络包写入到指定的内存地址,接着网卡向 CPU 发起硬件中断,当 CPU 收到硬件中断请求后,根据中断表,调用已经注册的中断处理函数。
      • 中断处理函数:
        • 先「暂时屏蔽中断」,表示已经知道内存中有数据了,告诉网卡下次再收到数据包直接写内存就可以了,不要再通知 CPU 了,这样可以提高效率,避免 CPU 不停的被中断。
        • 接着,发起「软中断」,然后恢复刚才屏蔽的中断。
      • 软中断:内核中的 ksoftirqd 线程专门负责软中断的处理,当 ksoftirqd 内核线程收到软中断后,就会来轮询处理数据(采用poll方法)。
        • ksoftirqd 线程会从 Ring Buffer 中获取一个数据帧,用 sk_buff 表示,从而可以作为一个网络包交给网络协议栈进行逐层处理。
      • 网络协议栈:
        • 先进入到网络接口层,在这一层会检查报文的合法性,如果不合法则丢弃,合法则会找出该网络包的上层协议的类型,比如是 IPv4,还是 IPv6,接着再去掉帧头和帧尾,然后交给网络层。
        • 网络层,则取出 IP 包,判断网络包下一步的走向,比如是交给上层处理还是转发出去。当确认这个网络包要发送给本机后,就会从 IP 头里看看上一层协议的类型是 TCP 还是 UDP,接着去掉 IP 头,然后交给传输层。
        • 传输层取出 TCP 头或 UDP 头,根据四元组「源 IP、源端口、目的 IP、目的端口」 作为标识,找出对应的 Socket,并把数据放到 Socket 的接收缓冲区。
        • 应用层程序调用 Socket 接口,将内核的 Socket 接收缓冲区的数据「拷贝」到应用层的缓冲区,然后唤醒用户进程。

在这里插入图片描述

5. Linux 发送网络包的流程

  • 首先,应用程序会调用 Socket 发送数据包的接口,由于这个是系统调用,所以会从用户态陷入到内核态中的 Socket 层,内核会申请一个内核态的 sk_buff 内存,将用户待发送的数据拷贝到 sk_buff 内存,并将其加入到发送缓冲区
  • 接下来,网络协议栈从 Socket 发送缓冲区中取出 sk_buff,并按照 TCP/IP 协议栈从上到下逐层处理。
    • 如果使用的是 TCP 传输协议发送数据,那么先拷贝一个新的 sk_buff 副本,因为 sk_buff 后续在调用网络层,最后到达网卡发送完成的时候,这个 sk_buff 会被释放掉。而 TCP 协议是支持丢失重传的,在收到对方的 ACK 之前,这个 sk_buff 不能被删除。所以内核的做法就是每次调用网卡发送的时候,实际上传递出去的是 sk_buff 的一个拷贝,等收到 ACK 再真正删除。
    • 接着,对 sk_buff 填充 TCP 头。sk_buff 可以表示各个层的数据包,在应用层数据包叫 data,在 TCP 层我们称为 segment,在 IP 层我们叫 packet,在数据链路层称为 frame。
      • 全部数据包只用一个结构体来描述是因为:协议栈采用的是分层结构,上层向下层传递数据时需要增加包头,下层向上层数据时又需要去掉包头,如果每一层都用一个结构体,那在层之间传递数据的时候,就要发生多次拷贝,这将大大降低 CPU 效率。
      • 只用 sk_buff 一个结构体来描述所有的网络包不会发生拷贝,通过调整 sk_buff 中 data 的指针来实现,比如:
        • 当接收报文时,从网卡驱动开始,通过协议栈层层往上传送数据报,通过增加 skb->data 的值,来逐步剥离协议首部。
          • 当要发送报文时,创建 sk_buff 结构体,数据缓存区的头部预留足够的空间,用来填充各层首部,在经过各下层协议时,通过减少 skb->data 的值来增加协议首部。

在这里插入图片描述

  • 到达网络层的主要工作:选取路由(确认下一跳的 IP)、填充 IP 头、netfilter 过滤、对超过 MTU 大小的数据包进行分片。处理完这些工作后会交给网络接口层处理。

    • 网络接口层会通过 ARP 协议获得下一跳的 MAC 地址,然后对 sk_buff 填充帧头和帧尾,接着将 sk_buff 放到网卡的发送队列中。
    • 这一些工作准备好后,会触发「软中断」告诉网卡驱动程序,这里有新的网络包需要发送,驱动程序会从发送队列中读取 sk_buff,将这个 sk_buff 挂到 RingBuffer 中,接着将 sk_buff 数据映射到网卡可访问的内存 DMA 区域,最后触发真实的发送。
    • 当发送完成的时候,网卡设备会触发一个硬中断来释放内存,主要是释放 sk_buff 内存和清理 RingBuffer 内存。
    • 最后,当收到这个 TCP 报文的 ACK 应答时,传输层就会释放原始的 sk_buff 。
  • 问题:发送网络数据的时候,涉及几次内存拷贝操作?

    • 第一次,调用发送数据的系统调用的时候,内核会申请一个内核态的 sk_buff 内存,将用户待发送的数据拷贝到 sk_buff 内存,并将其加入到发送缓冲区。
    • 第二次,在使用 TCP 传输协议的情况下,从传输层进入网络层的时候,每一个 sk_buff 都会被克隆一个新的副本出来。副本 sk_buff 会被送往网络层,等它发送完的时候就会释放掉,然后原始的 sk_buff 还保留在传输层,目的是为了实现 TCP 的可靠传输,等收到这个数据包的 ACK 时,才会释放原始的 sk_buff 。
    • 第三次,当 IP 层发现 sk_buff 大于 MTU 时才需要进行。会再申请额外的 sk_buff,并将原来的 sk_buff 拷贝为多个小的 sk_buff。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度剖析云边对接技术:探索开放API接口的价值与意义

在当今数字化时代的浪潮中,云边对接与开放API接口成为了塑造行业生态的重要驱动力。随着云计算、物联网和边缘计算等技术的快速发展,传统产业正在迈向数字化转型的关键时刻。而在这个过程中,云边对接技术以及开放的应用程序接口(API)扮演着举…

处理STM32 DMA方式下的HAL_UART_ERROR_ORE错误

1. 检查并调整DMA和UART配置 确保初始化顺序:需要确保USART的CR寄存器UE位开关留到最后打开,即完成USART和DMA的所有配置初始化后再使能USART。这样可以避免初始化顺序不当导致的通信问题。配置合适的DMA缓冲区:确保DMA缓冲区足够大&#xf…

Facebook海外三不限 | 如何降低Facebook频繁被封的风险

本文将讨论Facebook账户被封的原因及降低封禁风险的方法,以维护用户的账户安全和社交乐趣。 1. 常见原因:账户被封通常与发布违反社区标准的内容有关,如仇恨言论、暴力内容、欺诈虚假信息、非法活动、骚扰、版权侵权等。此外,未授…

el-date-picker选择开始日期的近半年

<el-date-pickerv-model"form[val.key]":type"val.datePickerType || daterange":clearable"val.clearable && true"range-separator"~"start-placeholder"开始日期"end-placeholder"结束日期"style&q…

玩转Linux进度条

准备工作&#xff1a; 一.关于缓冲区 首先&#xff0c;咱们先来一段有意思的代码&#xff1a; #include<stdio.h> #include<unistd.h> int main() {printf("you can see me");sleep(5);} 你可以在你的本地运行一下&#xff0c;这里我告诉大家运行结果…

【SAP HANA 33】前端参数多选情况下HANA如何使用in来匹配?

场面描述: 在操作界面经常会出现某个文本框需要多选的情况,然后后台需要根据多选的值进行匹配搜索。 一般处理的情况是: 1、在Java后端动态生成SQL 2、不改变动态SQL的情况,直接当做一个正常的参数进行传递 本次方案是第二个,直接当做一个正常的字符串参数进行传递即…

【面试题-014】Mysql数据库有哪些索引类型?

文章目录 B 树和 B 树区别B 树B 树 mysql聚簇索引和非聚簇索引聚簇索引&#xff08;Clustered Index&#xff09;非聚簇索引&#xff08;Non-Clustered Index&#xff09;总结 MyISAM和InnoDB两种常见的存储引擎区别MySQL的主从同步原理如何确保主从同步的数据一致性&#xff1…

使用C++实现高效的套接字连接池

在现代网络应用中&#xff0c;高效管理网络连接是实现高并发和低延迟的重要因素。下面将详细介绍如何使用C实现一个高效的套接字连接池&#xff0c;以便在需要时快速复用连接&#xff0c;从而提高系统性能和资源利用率。 一、什么是连接池&#xff1f; 连接池是一种管理网络连…

RFID防盗门:守护您的商品资产安全!

在新零售运营管理中&#xff0c;防盗是至关重要的一环。根据美国零售联合会发布的年度零售安全调查&#xff0c;2022年美国零售商损失了创纪录的1121亿美元。其中年度损失最大因素是由外部盗窃导致库存损失和员工内部盗窃造成的。 然而传统零售业商品资产盘点往往依赖人工排查&…

ConcurrentHashMap详解 什么时候CAS什么时候synchronized

jdk:1.7 segment数组hashEntry数组链表实现 jdk版本&#xff1a;1.8&#xff1a;hashEntry数组红黑树实现 1、基本参数 //**1、最大容量** hashmap的最大容量也是这个&#xff0c;菜鸟一面被问到了 private static final int MAXIMUM_CAPACITY 1 << 30;//数组默认为…

《科技与健康》是什么级别的期刊?是正规期刊吗?能评职称吗?

问题解答 问&#xff1a;《科技与健康》期刊万方网可查吗 答&#xff1a;万方、维普可查 问&#xff1a;《科技与健康》是正规期刊吗&#xff1f; 答&#xff1a;万方维普收录的正规期刊。主管单位&#xff1a;长江出版传媒股份有限公司 主办单位&#xff1a;湖北科学技术…

孩子出生后为什么要做听力筛查?

孩子出生后为什么要做听力筛查&#xff1f; 新生儿听力筛查&#xff0c;就是对所有新生儿在尽早的时间&#xff08;出生48小时后&#xff09;进行系统的听力筛查测试。据相关文献报道&#xff0c;在我国&#xff0c;正常分娩的新生儿听力障碍的发生率约为0.1&#xff5e;0.3%&a…

机场专用手持激光驱鸟器原理及优势

在机场的驱鸟工作中&#xff0c;各类驱鸟设备共同构建起一道坚不可摧的防线&#xff0c;以保障航班的安全起降。其中激光驱鸟器以其卓越的性能和显著效果&#xff0c;在机场鸟击防治中发挥着至关重要的作用。 激光驱鸟器&#xff0c;分为大型自动式和小型手持式&#xff0c;其有…

Python 技能提升(二)

理想的类结构 Property装饰器 # 传统写法 class Square1:def __init__(self):self.__side Nonedef get_side(self):return self.__sidedef set_side(self, side):assert side > 0, 边长不能为负数&#xff01;self.__side sidedef del_side(self):# del self.__sideself.…

「前端+鸿蒙」核心技术HTML5+CSS3(十)

1、H5简介 H5是HTML5的简称,是构建现代网站和网络应用的标准标记语言。HTML5新增了许多功能,包括更好的多媒体支持、新的表单控件、绘图功能以及对响应式设计的改进。 2、H5产品布局 移动端H5网站布局通常使用流体布局或弹性盒模型(Flexbox),以适应不同屏幕尺寸。 示例…

2024年有什么值得入手的5G长期套餐大流量卡推荐?大流量手机卡入手指南(超4款正规手机卡实测总结)

前言 24年有什么值得入手的5G大流量卡推荐&#xff1f;大流量手机卡入手指南&#xff08;超4款正规手机卡实测总结&#xff09; 四大运营商有哪些大流量卡&#xff0c;可电话&#xff0c;非物联网卡 所有卡激活后&#xff0c;均可以在官方app可查、 所有都是优惠长期 5G大流…

Python-匿名函数

一、概念 匿名函数造出来的是一个内存地址&#xff0c;且内存地址没有绑定任何名字&#xff0c;很快被当做垃圾清理掉。所以匿名函数只需要临时调用一次&#xff0c;而有名函数永久使用&#xff1b; 匿名函数一般和其他函数配合使用&#xff1b; # 有名函数def func(x, y):…

抖音直播统计、直播间无人互动直播效果软件--抖音大师!

抖音大师介绍 抖音大师是抖音直播统计、直播间无人互动直播效果软件&#xff0c;通过它&#xff0c;你可以快速添加直播互动效果&#xff01;软件使用C#开发&#xff0c;无论是内存占用还是执行效果都远比同行的效果高太多&#xff01;&#xff01;电脑所需性能大大降低&#x…

内联汇编简介

在C语言中嵌入汇编&#xff08;Assembly&#xff09;代码&#xff0c;可以使用内联汇编&#xff08;Inline Assembly&#xff09;&#xff0c;这在一些需要精确控制硬件或者优化性能的场合非常有用 以下是关于ASM语法的介绍&#xff0c;主要基于GCC&#xff08;GNU Compiler C…

做软件测试需要懂代码吗?

随着大数据、机器学习时代的到来&#xff0c;不少人有了“测试不需要懂代码&#xff0c;那我就试试”的想法。这就引发了一系列疑问&#xff1a;不懂代码可以做测试吗&#xff1f;测试人员到底需不需要懂代码&#xff1f;测试人员需要写代码吗&#xff1f; 其实&#xff0c;在…