论文网址:[1705.08415] Supervised Community Detection with Line Graph Neural Networks (arxiv.org)
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
⭐内涵大量可视化推导
目录
1. 省流版
1.1. 心得
2. 论文逐段精读
2.1. Abstract
2.2. Introduction
2.3. Problem setup
2.4. Related works
2.5. Line Graph Neural Networks
2.5.1. Graph neural networks using a family of multiscale graph operators
2.5.2. LGNN: GNN on line graphs with the non-backtraking operator
2.5.3. A loss function invariant under label permutation
2.6. Loss landscape of linear GNN optimization
2.7. Experiments
2.7.1. Stochastic block models
2.7.2. Probing the computational-to-statistical threshold in 5-class SBM
2.7.3. Real datasets from SNAP
2.8. Conclusion
3. 知识补充
3.1. Belief propagation
4. Reference List
1. 省流版
1.1. 心得
(1)改论文发表时间较早,许多公式表达没有统一现在的GNN,此文章统一将矩阵表示为大写字母
(2)不过这个有向信息流捕获感觉还有待商榷,还是感觉偏伪信息
2. 论文逐段精读
2.1. Abstract
①They proposed a family of Graph Neural Networks (GNNs)
②Tasks: supervised community detection
③GNN augmentation: non-backtracking operator on the line graph of edge adjacencies
2.2. Introduction
LGNN can capture directed information flow from undirected graphs
2.3. Problem setup
①Task: node classification
②Graph:
③Label of nodes: , where denotes the number of communities
④Training set:
⑤The minimized loss function: where the predicted label is , is a loss function, and represents the model
2.4. Related works