关系数据库:关系运算

文章目录

    • 关系运算
      • 并(Union)
      • 差(Difference)
      • 交(Intersection)
      • 笛卡尔积(Extended Cartesian Product)
      • 投影(projection)
      • 选择(Selection)
      • 除(Division)
      • 连接(join)
      • 外连接(outer join)
      • 聚集函数
    • 元组演算
    • 查询优化

关系运算

关系代数运算符有集合运算符、专门的关系运算符、算术比较符和逻辑运算符,如下:

关系代数

并(Union)

关系R与S的并由属于R或属于S的元组构成的集合组成,定义为 R ∪ S = { t ∣ t ∈ R ∨ t ∈ S } R\cup S=\{t|t\in R \vee t\in S\} RS={ttRtS},t为元组变量,R与S具有相同的关系模式(结构相同)

并
等价SQL:

SELECT A,B,C FROM R
UNION 
SELECT A,B,C FROM S;

差(Difference)

关系R与S的差由属于R但不属于S的元组构成的集合组成,定义为 R − S = { t ∣ t ∈ R ∧ t ∉ S } R - S=\{t|t\in R \wedge t\notin S\} RS={ttRt/S},t为元组变量,R与S具有相同的关系模式(结构相同)

差
等价SQL:

SELECT A,B,C FROM R
EXCEPT
SELECT A,B,C FROM S;

交(Intersection)

关系R与S的差由属于R同时又属于S的元组构成的集合组成,定义为 R ∩ S = { t ∣ t ∈ R ∧ t ∈ S } R \cap S=\{t|t\in R \wedge t\in S\} RS={ttRtS},t为元组变量,R与S具有相同的关系模式(结构相同)。也可以表示成 R ∩ S = R − ( R − S ) , 或者 R ∩ S = S − ( S − R ) R \cap S =R-(R-S), 或者R \cap S=S-(S-R) RS=R(RS),或者RS=S(SR)

交
等价SQL:

SELECT A,B,C FROM R
INTERSECT
SELECT A,B,C FROM S;

笛卡尔积(Extended Cartesian Product)

两个元数分别为n目和m目的关系R和S的广义笛卡尔积是一个(n+m)列的元组的集合。元组的前n列是关系R的一个元组,后m列是关系S的一个元组,形式定义 R × S = { t ∣ t = < t n , t m > ∧ t n ∈ R ∧ t m ∈ S } R \times S=\{t|t= < t^n,t^m > \wedge t^n\in R \wedge t^m \in S \} R×S={tt=<tn,tm>tnRtmS}。其中, < t n , t m > < t^n,t^m > <tn,tm>表示元组 t n 和 t m t_n和t^m tntm拼接成的一个元组,t为元组变量。

若R有 K 1 K_1 K1个元组,S有 K 2 K_2 K2个元组,则R和S的广义笛卡尔积有 K 1 × K 2 K_1 \times K_2 K1×K2个元组。

笛卡尔积
等价SQL:

SELECT * FROM R
CROSS JOIN S;

投影(projection)

投影是从垂直方向进行运算,在关系R中选择出若干属性列A组成新的关系,形式定义为 π A ( R ) = { t ∣ t [ A ] ∣ t ∈ S } \pi_A(R) =\{t|t[A]|t\in S\} πA(R)={tt[A]tS}

投影
等价SQL:

SELECT A,C FROM R;

选择(Selection)

选择运算是从关系的水平方向进行运算,是从关系R中选择满足给定条件的诸元组,形式定义为 σ F ( R ) = { t ∣ t ∈ R ∧ F ( t ) = T r u e } \sigma_F(R)=\{t|t\in R \wedge F(t)=True\} σF(R)={ttRF(t)=True}

其中,F中的运算对象是属性名(或列的序号)或常数,运算符是算术比较符(<、≤、>、≥)和逻辑运算符( ∧ 、 ∨ 、 − \wedge、\vee、- )。例如, σ 1 ≥ 6 ( R ) \sigma_{1≥6}(R) σ16(R)表示选取R关系中第1个属性值大于等于第6个属性值的元组; σ 1 > 6 ( R ) \sigma_{1>6}(R) σ1>6(R)表示选取R关系中第1个属性值大于6的元组。

选择
等价SQL:

SELECT A,B,C FROM R WHERE A>B;

除(Division)

除运算是同时从关系的水平方向和垂直方向进行运算。给定关系R(X,Y)和S(Y,Z),X、Y、Z为属性组。 R ÷ S R\div S R÷S应当满足元组在X上的分量值 x x x的象集 Y x Y_x Yx包含关系S在属性组Y上投影的集合。形式定义为 R ÷ S = { t n [ X ] ∣ t n ∈ R ∧ π y ( S ) ⊆ Y x R\div S=\{t_n[X]|t_n\in R \wedge \pi_y(S) \subseteq Y_x R÷S={tn[X]tnRπy(S)Yx

其中, Y x 为 x Y_x为x Yxx在R的象集, x = t n [ X ] x=t_n[X] x=tn[X]。且 R ÷ S R\div S R÷S的结果集的属性组为X。

示例:已知R和S的关系,求 R ÷ S R\div S R÷S

除

分析:根据定义,Y为属性CD,X为属性AB, R ÷ S R\div S R÷S应当满足元组在AB上的分量值 x x x的象集 Y x Y_x Yx包含关系S在属性组CD上投影的集合。关系S在Y上的投影为 π y ( S ) = { ( c , d ) , ( e , f ) } \pi_y(S)=\{(c,d),(e,f)\} πy(S)={(c,d),(e,f)},属性组X(即AB)可以取3个值 { ( a , b ) , ( b , d ) , ( c , k ) } \{(a,b),(b,d),(c,k)\} {(a,b),(b,d),(c,k)}

  • 象集 C D ( a , b ) = { ( c , d ) , ( e , f ) , ( h , k ) } 象集CD_{(a,b)}=\{(c,d),(e,f),(h,k)\} 象集CD(a,b)={(c,d),(e,f),(h,k)}
  • 象集 C D ( b , d ) = { ( e , f ) , ( d , l ) } 象集CD_{(b,d)}=\{(e,f),(d,l)\} 象集CD(b,d)={(e,f),(d,l)}
  • 象集 C D ( c , k ) = { ( c , d ) , ( e , f ) } 象集CD_{(c,k)}=\{(c,d),(e,f)\} 象集CD(c,k)={(c,d),(e,f)}

由于上述象集包含 π y ( S ) 有 { ( a , b ) } 和 { ( c , k ) } \pi_y(S)有\{(a,b)\}和\{(c,k)\} πy(S){(a,b)}{(c,k)},所以 R ÷ S = { ( a , b ) , { ( c , k ) } R\div S=\{(a,b),\{(c,k)\} R÷S={(a,b),{(c,k)}$

连接(join)

  1. θ \theta θ连接

θ \theta θ连接是从R与S的笛卡尔积中选取属性间满足一定条件的元组,形式定义:

R ⋈ X θ Y S = { t ∣ t = < t n , t m > ∧ t n ∈ R ∧ t m ∈ S ∧ t n [ X ] θ t m [ Y ] } R \bowtie_{X\theta Y}S=\{t|t= < t^n,t^m > \wedge t^n \in R \wedge t^m \in S \wedge t^n[X] \theta t^m[Y]\} RYS={tt=<tn,tm>tnRtmStn[X]θtm[Y]}

其中, X θ Y X\theta Y Y为连接的条件, θ \theta θ是比较运算符,X和Y分别为R和S上度数相等,且可比的属性组。 t n [ X ] t^n[X] tn[X]表示R中 t n t^n tn元组的对应于属性X的一个分量。 t n [ Y ] t^n[Y] tn[Y]表示R中 t m t^m tm元组的对应于属性Y的一个分量。

还可以表示为 R ⋈ X θ Y S = σ X θ Y ( R × S ) R \bowtie_{X\theta Y}S=\sigma_{X\theta Y}(R\times S) RYS=σY(R×S)或者 R ⋈ i θ j S = σ i θ ( i + j ) ( R × S ) R \bowtie_{i\theta j}S=\sigma_{i\theta (i+j)}(R\times S) RiθjS=σiθ(i+j)(R×S)

连接
等价SQL:

SELECT * FROM R
CROSS JOIN S
WHERE R.A<S.B;
  1. 等值连接

θ \theta θ为“=”时,称为等值连接,形式定义为 R ⋈ X = Y S = { t ∣ t = < t n , t m > ∧ t n ∈ R ∧ t m ∈ S ∧ t n [ X ] = t m [ Y ] } R \bowtie_{X= Y}S=\{t|t= < t^n,t^m > \wedge t^n \in R \wedge t^m \in S \wedge t^n[X] = t^m[Y]\} RX=YS={tt=<tn,tm>tnRtmStn[X]=tm[Y]}

  1. 自然连接

自然连接时一种特殊的等值连接,要求两个关系中进行比较的分量必须是相同的属性组,并且在结果集中将重复属性去掉。形式定义:

R ⋈ S = { t ∣ t = < t n , t m ∗ > ∧ t n ∈ R ∧ t m ∈ S ∧ S . B 1 = R . B 1 ∧ R . B 2 = S . B 2 ∧ . . . ∧ R . B n = S . B n } R \bowtie_S=\{t|t= < t^n,t^{m^\ast} > \wedge t^n \in R \wedge t^m \in S \wedge S.B_1=R.B_1\wedge R.B_2=S.B_2\wedge ... \wedge R.B_n=S.B_n \} RS={tt=<tn,tm>tnRtmSS.B1=R.B1R.B2=S.B2...R.Bn=S.Bn}

其中 t n t_n tn表示关系R的元组变量, t m t_m tm表示关系S的元组变量。R和S具有相同的属性组B,且 B = ( B 1 , B 2 , . . . , B k ) B=(B_1,B_2,...,B_k) B=(B1,B2,...,Bk)。假定R的属性为 A 1 , A 2 , . . . , A n − k , B 1 , B 2 , . . . , B k A_1,A_2,...,A_{n-k},B_1,B_2,...,B_k A1,A2,...,Ank,B1,B2,...,Bk,假定S的属性为 B 1 , B 2 , . . . , B k , B k + 1 , B k + 2 , . . . , B m B_1,B_2,...,B_k,B_{k+1},B_{k+2},...,B_m B1,B2,...,Bk,Bk+1,Bk+2,...,Bm,S的元组变量去除重复属性B所组成新的元组为 t m ∗ t^{m^\ast} tm

自然连接
等价SQL:

SELECT R.A,R.B,R.C,R.D
FROM R,S 
WHERE R.A=S.A AND R.C=S.C;

要求两个关系中进行比较的分量必须是相同的属性组并且在结果集中将重复属性列去掉。

外连接(outer join)

外连接是连接运算的扩展,可以处理缺失的信息。

外连接

  • 左外连接(left outer join)。取出左侧关系中所有与右侧关系中任一元组都不匹配的元组,用空值null填充所有来自右侧关系的属性。

等价SQL:

SELECT R.A,R.B,R.C,S.D
FROM R
LEFT JOIN S 
ON R.B=S.B AND R.C=S.C;
  • 右外连接(right outer join)。取出右侧关系中所有与左侧关系中任一元组都不匹配的元组,用空值null填充所有来自左侧关系的属性。

等价SQL:

SELECT R.A,S.B,S.C,S.D
FROM R
RIGHT JOIN S 
ON R.B=S.B AND R.C=S.C;
  • 完全外连接(full outer join)。完成左外连接和右外连接的操作。既填充左侧关系中所有与右侧关系中任一元组都不匹配的元组,又填充右侧关系中所有与左侧关系中任一元组都不匹配的元组,将产生的新元组加入自然连接的结果中。

等价SQL:

SELECT R.A,R.B,R.C,S.D
FROM R
LEFT JOIN S 
ON R.B=S.B AND R.C=S.C
UNION 
SELECT R.A,S.B,S.C,S.D
FROM R
RIGHT JOIN S 
ON R.B=S.B AND R.C=S.C;

聚集函数

聚集函数输入一个值的集合,返回单一值作为结果。如集合12,4,6,8,10,15}。将聚集函数sum用于该集合时返回和45;将聚集函数avg用于该集合时返回平均值7.5;将聚集函数count用于该集合时返回集合中元数的个数6;将聚集函数min用于该集合时返回最小值2;将聚集函数max用于该集合时返回最大值15。

元组演算

表现形式为 { t ∣ P ( t ) } \{t|P(t)\} {tP(t)}。其中,t是元组变量, P ( t ) P(t) P(t) 是元组关系演算公式,公式是由原子公式组成的。

原子公式有如下三种形式:

  1. R ( t ) R(t) R(t)。R是关系名,t是元组变量,表示命题为“t是关系R的一个元组”。
  2. t [ i ] θ C 或 C θ t [ i ] t[i]\theta C 或C\theta t[i] t[i]θCCθt[i] t [ i ] t[i] t[i]表示元组变量t的第i个分量,C是常量, θ \theta θ为算术比较运算符。表示命题为“元组变量t的第i个分量与C直接满足 θ \theta θ运算“。如 t [ 3 ] < ′ 8 ′ t[3]<'8' t[3]<8表示t的第三个分量小于8。
  3. t [ i ] θ u [ j ] t[i]\theta u[j] t[i]θu[j]。t、u是两个元组变量,表示命题为“元组变量t的第i个分量与元组变量u的第j个分量直接满足 θ \theta θ运算”。如 t [ 2 ] ≥ u [ 4 ] t[2]\geq u[4] t[2]u[4]表示t的第二个分量大于等于u的第四个分量。

若一个公式中的一个元组变量前有全称量词 ∀ \forall 或存在量词 ∃ \exists 符号,则称该变量为约束变量,否则称之为自由变量。公式可递归定义:

  • 原子公式是公式。
  • 如果是 φ 1 \varphi_1 φ1 φ 2 \varphi_2 φ2公式,那么, ¬ φ 1 、 φ 1 ∨ φ 2 、 φ 1 ∧ φ 2 、 φ 1 ⇒ φ 2 \lnot \varphi_1、\varphi_1 \vee \varphi_2、\varphi_1 \wedge \varphi_2、\varphi_1 \Rightarrow \varphi_2 ¬φ1φ1φ2φ1φ2φ1φ2 也都是公式。分别表示命题: ¬ φ 1 \lnot \varphi_1 ¬φ1表示“ φ 1 \varphi_1 φ1不是真“; φ 1 ∨ φ 2 \varphi_1 \vee \varphi_2 φ1φ2表示“ φ 1 \varphi_1 φ1 φ 2 \varphi_2 φ2 φ 1 和 φ 2 \varphi_1和\varphi_2 φ1φ2为真”; φ 1 ∧ φ 2 \varphi_1 \wedge \varphi_2 φ1φ2表示“ φ 1 \varphi_1 φ1 φ 2 \varphi_2 φ2都为真”; φ 1 ⇒ φ 2 \varphi_1 \Rightarrow \varphi_2 φ1φ2表示“若 φ 1 \varphi_1 φ1为真则 φ 2 \varphi_2 φ2为真”。
  • 如果是 φ 1 \varphi_1 φ1公式,那么, ∃ t ( φ 1 ) \exists t(\varphi_1) t(φ1)是公式。表示命题为“若有一个t使 φ 1 \varphi_1 φ1为真,则 ∃ t ( φ 1 ) \exists t(\varphi_1) t(φ1)为真,否则 ∃ t ( φ 1 ) \exists t(\varphi_1) t(φ1)为假”。
  • 如果是 φ 1 \varphi_1 φ1公式,那么, ∀ t ( φ 1 ) \forall t(\varphi_1) t(φ1)是公式。表示命题为“若对所有t使 φ 1 \varphi_1 φ1为真,则 ∀ t ( φ 1 ) \forall t(\varphi_1) t(φ1)为真,否则 ∀ t ( φ 1 ) \forall t(\varphi_1) t(φ1)为假”。

公式中运算符优先级(低到高):算术比较运算符 θ \theta θ ∃ \exists ∀ \forall ¬ \lnot ¬ ∧ \wedge ∨ \vee ⇒ \Rightarrow 。加括号时,括号中的运算符优先。

关系代数转化为元组演算:

  1. 并。 R ∪ S = { t ∣ R ( t ) ∨ S ( t ) } R\cup S=\{t|R(t) \vee S(t)\} RS={tR(t)S(t)}
  2. 差。 R − S = { t ∣ R ( t ) ∧ ¬ S ( t ) } R - S=\{t|R(t) \wedge \lnot S(t)\} RS={tR(t)¬S(t)}
  3. 笛卡尔积。 R × S = { t ∣ ( ∃ u ) ( ∃ v ) ( R ( u ) ∧ S ( v ) ∧ t [ 1 ] = u [ 1 ] ∧ . . . ∧ t [ n ] = u [ n ] ∧ t [ n + 1 ] = v [ 1 ] ∧ . . . ∧ t [ n + m ] = v [ m ] ) } R \times S=\{t|(\exists u)(\exists v)(R(u)\wedge S(v)\wedge t[1]=u[1]\wedge ... \wedge t[n]=u[n]\wedge t[n+1]=v[1]\wedge ... \wedge t[n+m]=v[m])\} R×S={t(u)(v)(R(u)S(v)t[1]=u[1]...t[n]=u[n]t[n+1]=v[1]...t[n+m]=v[m])}
  4. 投影。 π i 1 , i 2 , . . . , i k ( R ) = { t ∣ ( ∃ u ) ( R ( u ) ∧ t [ 1 ] = u [ i 1 ] ∧ t [ 2 ] = u [ i 2 ] ∧ . . . ∧ t [ k ] = u [ i k ] } \pi_{i_1,i_2,...,i_k}(R) =\{t|(\exists u)(R(u)\wedge t[1]=u[i_1]\wedge t[2]=u[i_2]\wedge ... \wedge t[k]=u[i_k]\} πi1,i2,...,ik(R)={t(u)(R(u)t[1]=u[i1]t[2]=u[i2]...t[k]=u[ik]}
  5. 选择。 σ F ( R ) = { t ∣ R ( t ) ∧ F } \sigma_F(R)=\{t|R(t) \wedge F\} σF(R)={tR(t)F}

查询优化

查询处理是从数据库中提取数据的一系列活动。
查询处理的代价:总代价=I/O代价+CPU代价+内存代价(多用户环境)。
查询优化:为查询选择最有效的查询计划的过程。

优化的准则:

  • 提早执行选取运算。
  • 合并乘积与其后的选择运算为连接运算。
  • 将投影运算与其后的其他运算同时进行,以避免重复扫描关系。
  • 将投影运算和其前后的二木运算结合起来,使得没有必要为去掉某些字段再扫描一遍关系。
  • 在执行连接前对关系做适当的预处理,就能快速地找到要连接的元组。方法有两种:索引连接法、排序合并连接法。
  • 存储公共子表达式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/20189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

让表单引擎插上AI的翅膀-记驰骋表单引擎加入AI升级

让表单引擎插上AI的翅膀 随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;已经逐渐渗透到我们工作和生活的每一个角落。在数字化办公领域&#xff0c;表单引擎作为数据处理和流程自动化的重要工具&#xff0c;也迎来了与AI技术深度融合的新机遇。让表单引擎…

Java对象的比较——equals方法,Comparable接口,Comparator接口

Java对象的比较——equals方法&#xff0c;Comparable接口&#xff0c;Comparator接口 1. equals方法2. Comparable接口3. Comparator接口 1. equals方法 在判断两个整数是否相同时&#xff0c;我们可以使用以下方式&#xff1a; System.out.println(1 2); System.out.printl…

安防综合管理系统EasyCVR平台GA/T1400视图库:基于XML的消息体格式

GA/T 1400标准的应用范围广泛&#xff0c;涵盖了公安系统的视频图像信息应用系统&#xff0c;如警务综合平台、治安防控系统、交通管理系统等。在视频监控系统中&#xff0c;GA/T 1400公安视图库的对接是实现视频图像信息传输、处理和管理的重要环节。 以视频汇聚EasyCVR视频监…

【SpringBoot】怎么在一个大的SpringBoot项目中创建多个小的SpringBoot项目,从而形成子父依赖

父子项目工程创建 步骤 先创建父项目 具体操作步骤请看本文章&#xff1a;使用maven工程创建spring boot项目 创建子项目 file- project structure module–new module 剩下步骤请看创建父工程时的操作使用maven工程创建spring boot项目 应用 确认即可 之后创建启动类…

ARM32开发——LED驱动开发

&#x1f3ac; 秋野酱&#xff1a;《个人主页》 &#x1f525; 个人专栏:《Java专栏》《Python专栏》 ⛺️心若有所向往,何惧道阻且长 文章目录 需求介绍现实问题需求分析测试案例构建BSP驱动构建业务实现 需求介绍 开发版中有4个灯&#xff0c;现在需要用4个灯显示充电情况&a…

618大促有哪些好物是最值得入手的的?请收下这份618必买好物清单!

最近聊的最多的话题就是618&#xff0c;年中购物大狂欢马上来了&#xff01;&#xff01;今天整理了一下之前购买的好物&#xff0c;发现相比之前的价格真的是太划算了&#xff0c;赶紧分享出来给大家&#xff0c;趁着这个大促赶紧多存入手~ 推荐1、南卡Neo 2——不伤耳黑科技…

SPHINX的输出文档格式

SPHINX的输出文档格式 SPHINX的输出文档格式更多信息 SPHINX的输出文档格式 用rst编写&#xff0c;然后用sphinx-build进行编译&#xff0c;还是效果相当不错地&#xff0c;只要掌握了格式&#xff0c;可以一次编译&#xff0c;多种格式输出&#xff0c;主要是用的可能是html和…

记一次netty客户端的开发

背景 近日要开发一个tcp客户端程序去对接上游厂商的数据源&#xff0c;决定使用netty去处理&#xff0c;由于很久没有开发过netty了&#xff0c;顺便学习记录下 netty搭建 考虑到我们需要多个client去对接server服务&#xff0c;所以我们定义一个公共的AbstractNettyClient父…

LabVIEW与Arm控制器之间的通讯

LabVIEW是一个强大的图形化编程环境&#xff0c;广泛应用于自动化控制、数据采集和测试测量等领域。而Arm控制器则是嵌入式系统中常用的处理器架构&#xff0c;广泛用于各种控制和计算任务。将LabVIEW与Arm控制器进行通讯控制&#xff0c;可以结合二者的优势&#xff0c;实现高…

WordPress plugin MStore API SQL注入漏洞复现(CVE-2023-3077)

0x01 产品简介 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。WordPress plugin是一个应用插件。 0x02 漏洞概述 WordPress plugin MStore API 3.9.8 版本之前存在S…

Linux 深入讲解自动化构建工具

各位大佬好 &#xff0c;这里是阿川的博客 &#xff0c; 祝您变得更强 个人主页&#xff1a;在线OJ的阿川 大佬的支持和鼓励&#xff0c;将是我成长路上最大的动力 阿川水平有限&#xff0c;如有错误&#xff0c;欢迎大佬指正 Linux一系列的文章&#xff08;质量分均在93分…

配置arduino和ESP8266

首先准备好arduino 的IDE和ESP8266的驱动以及板子 1.安装驱动&#xff0c;双击x64的版本驱动&#xff0c;安装好以后&#xff0c;在资源管理器检查端口&#xff0c;比如下下图出现的COM4就是esp8266所使用的端口 2.安装好arduino最好不要在路径中存在中文符号&#xff0c;打开…

水滴式粉碎机:多功能饲料粉碎设备

饲料粉碎机是一种专门用于将各种饲料原料进行粉碎处理的机械设备。无论是玉米、小麦等谷物&#xff0c;还是豆粕、鱼粉等动物性原料&#xff0c;甚至是一些粗纤维含量较高的秸秆、牧草等&#xff0c;都可以经过饲料粉碎机的处理&#xff0c;变成适合畜禽消化吸收的精细饲料。这…

521源码-游戏源码-2024卡牌回合自走棋手游《梦间集》推出全新Linux手工服务端

首款稀有卡牌回合自走棋手游《梦间集》推出全新Linux手工服务端整理 更多网站源码&#xff0c;游戏源码&#xff0c;学习教程&#xff0c;请点击&#x1f449;-521源码-&#x1f448;获取最新资源 本游戏下载地址&#xff1a;2024卡牌回合自走棋手游《梦间集》推出全新Linux手…

【再探】设计模式—中介者模式、观察者模式及模板方法模式

中介者模式让多对多的复杂引用关系变成一对多&#xff0c;同时能通过中间类来封装多个类中的行为&#xff0c;观察者模式在目标状态更新时能自动通知给订阅者&#xff0c;模版方法模式则是控制方法的执行顺序&#xff0c;子类在不改变算法的结构基础上可以扩展功能实现。 1 中…

ChatGPT AI专题资料合集【65GB】

介绍 ChatGPT & AI专题资料合集【65GB】 &#x1f381;【七七云享】资源仓库&#xff0c;海量资源&#xff0c;无偿分享√

文件系统小册(FusePosixK8s csi)【1 Fuse】

文件系统小册&#xff08;Fuse&Posix&K8s csi&#xff09;【1 Fuse&#xff1a;用户空间的文件系统】 Fuse(filesystem in userspace),是一个用户空间的文件系统。通过fuse内核模块的支持&#xff0c;开发者只需要根据fuse提供的接口实现具体的文件操作就可以实现一个文…

【测评|白嫖】雨云宁波新区,2C4G200M,公测期间全免费!

雨云香港三区云服务器&#xff0c;高性能的 Xeon Platinum 处理器 企业级 NVME SSD 高性能云服务器。 一键白嫖链接&#xff1a;https://www.rainyun.com 本篇纯测评&#xff0c;无任何广告&#xff0c;请放心食用&#xff01;&#xff01; 本次测评服务器配置如下&#xff1…

用万界星空科技低代码平台能快速搭建一个云MES系统

一、低代码平台与MES:智能制造的新篇章 随着工业4.0和智能制造的兴起&#xff0c;企业对于生产过程的数字化、智能化需求日益迫切。传统的MES系统实施周期长、成本高&#xff0c;成为许多企业数字化转型的瓶颈。而低代码开发平台的出现为这一问题提供了新的解决思路。 二、万界…

linux可观测性ebpf(一) ----------- 环境搭建

参考书籍 开发环境 Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-150-generic x86_64) 1.1 下载内核源码 cd /usr/src/ sudo git clone -b v5.4 https://github.com/torvalds/linux.git1.2 下载书中代码 git clone https://github.com/bpftools/linux-observability-with-bpf1.3 编…