Tensorflow入门实战 P02-彩色图片分类

目录

1、序言

2、主要代码

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

(3)模型评估


  • 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

1、序言

这篇博客,主要是讲的是彩色图片分类,数据集为:cifar10。

和以往的流程一样:

① 判断是否在GPU上运行

② 导入cifar10数据集

③ 归一化(将像素的值标准化至0-1的区间内)

④ 可视化数据集里的数据(展示了2行,共20张图片)

⑤ 搭建神经网络

⑥ 编译

⑦ 训练模型

⑧ 预测并显示预测的图片

⑨ 模型评估 

2、主要代码

import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
# 1、设置GPU
gpus = tf.config.list_physical_devices('GPU')if gpus:gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0,True)  # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")# 2、导入数据
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 3、归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape)
# (50000, 32, 32, 3)     (10000, 32, 32, 3)    (50000, 1)          (10000, 1)# 4、可视化
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()# 二、搭建神经网络
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),  # 卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),  # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Flatten(),  # Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(10)  # 输出层,输出预期结果
])# model.summary()  # 打印网络结构# 三、编译
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 四、训练模型
history = model.fit(train_images, train_labels, epochs=10,validation_data=(test_images, test_labels))# 五、预测
plt.imshow(test_images[1])
plt.show()pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])# 六、模型评估
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)print("test_loss:", test_loss, "---------test_acc:", test_acc)

3、运行结果展示

(1)展示cifar10里面的20张图片

(2)预测的图片

遗憾,我的结果预测错误,预测的是:automobile

(3)模型评估

上图可以看到,测试精确度达到70%左右。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/19518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

水经微图PC版4.3.10发布

让GIS更简单高效,让地图更丰富及时! 水经微图(以下简称“微图”)新版已上线,在该版本中主要新增了天地图历史影像查看功能,以及其它功能的优化。 当前版本 当前版本号为:4.3.10 如果你发现该…

Pytorch反向传播算法(Back Propagation)

一:revise 我们在最开始提出一个线性模型。 x为我们的输入,w为权重。相乘的结果是我们对y的预测值。 那我们在训练时就是对这个权重w进行更新,就需要用到上一章提到的梯度下降算法,不断更新w。但是此时注意不是用y的预测值对w进…

linux centos nfs挂载两台服务器挂载统一磁盘目录权限问题

查看用户id id 用户名另一台为 修改uid和gid为相同id,添加附加组 usermod -u500 -Gwheel epms groupmod -g500 epms

网络协议。

一、流程案例 接下来揭秘我要说的大事情,“双十一”。这和我们要讲的网络协议有什么关系呢? 在经济学领域,有个伦纳德里德(Leonard E. Read)创作的《铅笔的故事》。这个故事通过一个铅笔的诞生过程,来讲述…

[代码复现]Self-Attentive Sequential Recommendation(ing)

参考代码:SASRec.pytorch 可参考资料:SASRec代码解析 前言:文中有疑问的地方用?表示了。可以通过ctrlF搜索’?。 环境 conda create -n SASRec python3.9 pip install torch torchvision因为我是mac运行的,所以device是mps 下面…

算法(七)插入排序

文章目录 插入排序简介代码实现 插入排序简介 插入排序(insertion sort)是从第一个元素开始,该元素就认为已经被排序过了。然后取出下一个元素,从该元素的前一个索引下标开始往前扫描,比该值大的元素往后移动。直到遇到比它小的元…

【C语言】探索文件读写函数的全貌

🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 🌈C笔记专栏: C笔记 🌈喜欢的诗句:无人扶我青云志 我自踏雪至山巅 🔥引言 本章将介绍文件读取函数的相关知识和展示使用场景&am…

React组件通信——兄弟组件

兄弟组件通信 方法一:状态提升 子组件先将数据传递到父组件,父组件再把数据传到另一个子组件中。 import { useState } from "react"; // 定义A组件,向B组件发送数据 function A({ onGetMsg }) {const name "this is A na…

fyne apptab布局

fyne apptab布局 AppTabs 容器允许用户在不同的内容面板之间切换。标签要么只是文本,要么是文本和一个图标。建议不要混合一些有图标的标签和一些没有图标的标签。 package mainimport ("fyne.io/fyne/v2/app""fyne.io/fyne/v2/container"//&…

PolarDB分布式架构学习笔记

PolarDB分布式是什么? 业务场景有哪些? 分布式焦点问题? 技术架构 CN DN介绍 CDC组件介绍 Columnar组件介绍 视频学习:PolarDB 实操课 第一讲:PolarDB分布式版架构介绍_哔哩哔哩_bilibili

都在说的跨网文件共享系统是什么?企业该怎么甄选?

跨网文件共享系统成为越来越受关注的产品焦点,那么跨网文件共享系统是什么呢?跨网文件共享是指在不同网络之间共享文件的过程,使得不同网络中的用户可以访问和使用共享的文件。 原则上而言,不同网络间的文件是无法共享的&#xff…

OAK相机如何将 YOLOv9 模型转换成 blob 格式?

编辑:OAK中国 首发:oakchina.cn 喜欢的话,请多多👍⭐️✍ 内容可能会不定期更新,官网内容都是最新的,请查看首发地址链接。 Hello,大家好,这里是OAK中国,我是Ashely。 专…

最新消息:腾讯大模型App“腾讯元宝“上线了

🧙‍♂️ 诸位好,吾乃斜杠君,编程界之翘楚,代码之大师。算法如流水,逻辑如棋局。 📜 吾之笔记,内含诸般技术之秘诀。吾欲以此笔记,传授编程之道,助汝解技术难题。 &#…

Python代码:二十八、密码游戏

1、题目 牛牛和牛妹一起玩密码游戏,牛牛作为发送方会发送一个4位数的整数给牛妹,牛妹接收后将对密码进行破解。 破解方案如下:每位数字都要加上3再除以9的余数代替该位数字,然后将第1位和第3位数字交换,第2位和第4位…

2024年艺术鉴赏与科学教育国际会议(ICAASE 2024)

2024年艺术鉴赏与科学教育国际会议 2024 International Conference on Art Appreciation and Science Education 【1】会议简介 2024年艺术鉴赏与科学教育国际会议是一场集艺术、科学和教育于一体的国际性学术盛会。本次会议旨在推动艺术鉴赏与科学教育领域的深入交流与合作&am…

C语言(字符函数和字符串函数)1

Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注收藏,欢迎欢迎~~ 💥个人主页:小羊在奋斗 💥所属专栏:C语言 本系列文章为个人学习笔记&#x…

python API自动化(接口测试基础与原理)

1.接口测试概念及应用 什么是接口 接口是前后端沟通的桥梁,是数据传输的通道,包括外部接口、内部接口,内部接口又包括:上层服务与下层服务接口,同级接口 外部接口:比如你要从 别的网站 或 服务器 上获取 资源或信息 &a…

SpringMVC框架学习笔记(四):模型数据 以及 视图和视图解析器

1 模型数据处理-数据放入 request 说明&#xff1a;开发中, 控制器/处理器中获取的数据如何放入 request 域&#xff0c;然后在前端(VUE/JSP/...)取出显 示 1.1 方式 1: 通过 HttpServletRequest 放入 request 域 &#xff08;1&#xff09;前端发送请求 <h1>添加主人…

基于RNN和Transformer的词级语言建模 代码分析 _generate_square_subsequent_mask

基于RNN和Transformer的词级语言建模 代码分析 _generate_square_subsequent_mask flyfish Word-level Language Modeling using RNN and Transformer word_language_model PyTorch 提供的 word_language_model 示例展示了如何使用循环神经网络RNN(GRU或LSTM)和 Transforme…

【AI大模型】如何让大模型变得更聪明?基于时代背景的思考

【AI大模型】如何让大模型变得更聪明 前言 在以前&#xff0c;AI和大模型实际上界限较为清晰。但是随着人工智能技术的不断发展&#xff0c;基于大规模预训练模型的应用在基于AI人工智能的技术支持和帮助上&#xff0c;多个领域展现出了前所未有的能力。无论是自然语言处理、…