人脸识别——探索戴口罩对人脸识别算法的影响

1. 概述

人脸识别是一种机器学习技术,广泛应用于各种领域,包括出入境管制、电子设备安全登录、社区监控、学校考勤管理、工作场所考勤管理和刑事调查。然而,当 COVID-19 引发全球大流行时,戴口罩就成了日常生活中的必需品。广泛使用的人脸识别技术受到严重影响,传统人脸识别技术的性能显著下降。虽然在过去几年中已有报道称支持口罩的人脸识别模型达到了一定的准确度,但佩戴口罩对人脸识别的影响尚未得到充分研究。
因此,本文比较并评估了多种人脸识别模型在辨别 "蒙蔽 "和 "未蒙蔽 "人脸图像时的性能。本文使用了六种传统的机器学习算法:支持向量机(SVC)、K 近邻(KNN)、线性判别分析(LDA)、决策树(DT)、逻辑回归(LR)和天真贝叶斯(NB)。(深度学习模型尚未经过验证)。
它研究了蒙面人脸图像的最佳和最差性能模型。论文还根据一个蒙面和未蒙面人脸图像数据集以及一个半蒙面人脸图像数据集对性能进行了评估。与以往的研究相比,本文的独特之处在于研究了广泛的面具佩戴数据和机器学习模型。
论文地址:https://arxiv.org/pdf/2306.08549.pdf

2. 机器学习模型和数据集

本文评估了六种模型:支持向量机(SVC/Support Vector Classifier)、线性判别分析(LDA/Linear Discriminant Analysis)、K-近邻(KNN/K-Nearest Neighbours)、决策树(DT/Decision Trees)、逻辑回归(LR/Logistic Regression)和奈夫贝叶斯(NB/Naïve Bayes)。(DT/决策树)、逻辑回归(LR/逻辑回归)和奈夫贝叶斯(NB/奈夫贝叶斯)。

该数据集还使用了 (ORL),其中包含 41 个受试者和每个受试者 10 张图像,共计 410 张未掩盖的人脸图像。下图显示了 ORL 的样本数据。

本文使用开源软件 MaskTheFace 为 ORL 人脸图像添加面具,并制作出佩戴面具的人脸图像。佩戴的面具是从六个面具模板中随机选择并添加的。下图显示了添加面具后的样本数据。

2. 实验细节

本文使用上述机器学习模型和数据集进行了六项实验。请注意,在所有实验中,特征提取都使用了局部二进制模式(LBP)算法。

**(实验 1)**在为 41 名受试者每人准备的 10 幅图像中,有 9 幅被用作未戴面罩的人脸图像,并对 6 个机器学习模型进行训练。在为 41 名受试者每人准备的 10 张图像中,剩下的一张也用作无遮罩的人脸图像,并对每个机器学习模型进行测试。

(实验 2)在为 41 名受试者每人准备的 10 张图像中,9 张作为未戴面罩的人脸图像用于训练 6 个机器学习模型。在为 41 名受试者每人准备的 10 张图像中,剩下的一张图像将与 MaskTheFace 一起使用,作为戴面具的人脸图像对每个模型进行测试。图 3

(实验 3)在为 41 名受试者每人准备的 10 幅图像中,有 9 幅被用作戴了面具的人脸图像,并训练了 6 个机器学习模型。在为 41 名受试者每人准备的 10 张图像中,剩下的一张也被用作无面具人脸图像,用于测试每个机器学习模型。

(实验 4)在为 41 名受试者每人准备的 10 幅图像中,有 9 幅被用作戴上面具后的人脸图像,并训练了 6 个机器学习模型。然后,使用 MaskTheFace 将为 41 名受试者分别准备的 10 幅图像中的其余一幅图像作为戴上面具的人脸图像,对每个模型进行测试。图 4

(实验 5)在为 41 名受试者每人准备的 10 幅图像中,保留一幅图像用于测试,其余 9 幅图像中的 4 幅在 MaskTheFace 软件中组合为戴面具的人脸图像,4 幅为未戴面具的人脸图像,总共 8 幅人脸图像。这样就形成了一个半数人脸图像戴有面具的数据集。利用这个数据集,可以训练出六个机器学习模型,每个模型都要在一张未戴面具的人脸图像上进行测试。

**(实验 6)**使用实验 5 中创建的数据集训练了六个机器学习模型,该数据集由半张被遮挡的人脸图像组成,每个模型都在单张被遮挡的人脸图像上进行了测试。图 5

3. 实验结果

下表显示了六个机器学习模型在所有六个实验中的准确率。对于在未屏蔽人脸图像(UM)上训练并在屏蔽人脸图像(M)上测试的机器学习模型(UM/M),LDA 的准确率下降幅度最小,为 61%,而 KNN 的准确率下降幅度最大,为 24%。还可以看出,对于在蒙版人脸图像(M)上训练并在蒙版图像(M)上测试的机器学习模型,LR 的准确率最高,为 80%,而 KNN 的准确率最低,为 37%。

下表显示了六种机器学习模型在所有六次实验中的 F1 分数。对于在未遮挡人脸图像(UM)上训练并在遮挡人脸图像(M)上测试的机器学习模型,LDA 的 F1 分数最高,为 76%,KNN 的分数最低,为 39%。而对于一半在蒙蔽人脸图像(HM)上训练,一半在蒙蔽图像(M)上测试的模型,LR 的 F1 得分最高,为 89%,KNN 的得分最低,为 54%。在蒙蔽图像(M)上训练并在蒙蔽图像(M)上测试的模型中,LR 的 F1 得分最高,为 89%,DT 的得分最低,为 54%。

回顾下表(再次),我们可以看到,在未蒙面的人脸图像(UM)上训练和在未蒙面的人脸图像(UM)上测试时,最佳平均性能为 81%。这是很自然的结果,因为机器学习模型是基于人脸图像没有戴面具这一假设建立的。另一方面,当模型在未戴面具的人脸图像上训练并在戴面具的人脸图像上测试时,平均性能最低,仅为 45%。这表明,正如 Corona 灾难所报告的那样,在未戴面具的人脸图像上训练的模型并不适合识别戴面具的人脸图像。这与已报告的结果具有可重复性。

我们还发现,如果在一个由不戴面具的人脸图像或一半戴面具的人脸图像组成的数据集上进行训练,机器学习模型在蒙面人脸图像测试中的平均准确率会下降。如果机器学习模型在戴了面具的人脸图像上进行训练,则测试戴了面具的人脸图像的准确率会提高。

上表还显示,在所有三种类型的训练数据上,LR 在识别未蒙蔽人脸图像方面都优于其他模型。当在带有遮挡或半遮挡图像的数据集上进行训练时,LR 在识别遮挡图像方面优于其他模型。

对于需要识别遮挡和未遮挡面部图像的系统来说,最好在由半遮挡面部图像组成的数据集上进行训练,并使用 LR,如上表所示。

4. 总结

本文为了研究戴面具对机器学习模型的影响,使用支持向量机(SVC/Support Vector Classifier)、线性判别分析(LDA/Linear Discriminant Analysis)、K-近邻(KNN/K-Nearest NeighboursSVC/Support Vector Classifier)、线性判别分析(LDA/Linear Discriminant Analysis)、K-Nearest Neighbours(KNN/K-Nearest Neighbours)、决策树(DT/Decision Trees)、逻辑回归(Logistic Regression (LR/Logistic Regression)和奈夫贝叶斯(NB/Naïve Bayes),并使用六种机器学习模型进行了详尽的实验。

实验结果表明,在 "半遮挡和半未遮挡面部图像数据集 "上进行训练时,LR 作为同时识别遮挡和未遮挡面部图像的系统表现最佳。

在识别被遮挡的人脸图像时,在更多被遮挡的人脸图像上训练的模型的准确率呈上升趋势,但与此同时,在识别未被遮挡的图像时,准确率呈下降趋势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/19299.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反射机制大揭秘-进阶Java技巧,直击核心!

反射在Java中扮演着重要的角色,掌握了反射,就等于掌握了框架设计的钥匙。本文将为您逐步讲解反射的基本概念、获取Class对象的三种方式、使用反射实例化对象并操作属性和方法,还有解析包的相关内容。跟随我一起探索反射的奥秘,提升…

使用 Ubuntu + Docker + Vaultwarden + Tailscale 自建密码管理器

使用 Ubuntu Docker Vaultwarden Tailscale 自建密码管理器 先决条件 一台运行 Ubuntu 系统的服务器。可以是云提供商的 VPS、家庭网络中的树莓派、或者 Windows 电脑上的虚拟机等等 一个 Tailscale 账户。如果还没有 Tailscale 账户,可以通过此链接迅速创建一个…

SelfKG论文翻译

SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs SelfKG:知识图中的自监督实体对齐 ABSTRACT 实体对齐旨在识别不同知识图谱(KG)中的等效实体,是构建网络规模知识图谱的基本问题。在其发展过程中,标…

zynq之UART

之前尝试UART0(MIO50、51),串口调试助手收到发送的内容。 现在板子上EMIO端有多个串口,所以看看这个怎么弄。 串口是484的转接板(接232的串口就会输出乱码) https://blog.51cto.com/u_15262460/2882973 …

【九十三】【算法分析与设计】719. 找出第 K 小的数对距离,N 台电脑的最长时间,二分答案法

719. 找出第 K 小的数对距离 - 力扣&#xff08;LeetCode&#xff09; 数对 (a,b) 由整数 a 和 b 组成&#xff0c;其数对距离定义为 a 和 b 的绝对差值。 给你一个整数数组 nums 和一个整数 k &#xff0c;数对由 nums[i] 和 nums[j] 组成且满足 0 < i < j < nums.le…

java调用远程接口下载文件

在postman中这样下载文件 有时下载文件太大postman会闪退&#xff0c;可以通过代码下载&#xff0c;使用hutool的http包

3步操作助您轻松实现苹果手机照片一键传输至电脑

对于很多使用苹果手机的用户来说&#xff0c;随着手机中照片和视频数量的不断积累&#xff0c;如何将这些珍贵的回忆从手机转移到电脑&#xff0c;以便更好地保存、整理和分享&#xff0c;成为了一个值得关注的问题。那么&#xff0c;苹果手机怎么把照片导入电脑呢&#xff1f;…

鸿蒙课程培训 | 讯方技术与鸿蒙生态服务公司签约,成为鸿蒙钻石服务商

3月15日&#xff0c;深圳市讯方技术股份有限公司与鸿蒙生态服务公司签署合作协议&#xff0c;讯方技术成为鸿蒙钻石服务商&#xff0c;正式进军鸿蒙原生应用培训开发领域。讯方技术总裁刘国锋、副总经理刘铭皓、深圳区域总经理张松柏、深圳区域交付总监张梁出席签约仪式。 作…

乡村振兴的乡村产业创新发展:培育乡村新兴产业,打造乡村产业新名片,促进乡村经济多元化发展

目录 一、引言 二、乡村产业创新发展的必要性 &#xff08;一&#xff09;适应新时代发展要求 &#xff08;二&#xff09;满足消费升级需求 &#xff08;三&#xff09;促进农民增收致富 三、培育乡村新兴产业策略 &#xff08;一&#xff09;加强科技创新引领 &#…

Android下HWC以及drm_hwcomposer普法((上)

Android下HWC以及drm_hwcomposer普法((上) 引言 按摩得全套&#xff0c;错了&#xff0c;做事情得全套&#xff0c;普法分析也是如此。drm_hwcomposer如果对Android图形栈有一定研究的童鞋们应该知道它是Android提供的一个的图形后端合成处理HAL模块的实现。但是在分析这个之前…

Java复习-集合篇

集合 集合分为俩大类 单列集合 每个元素数据只包含一个值 双列集合 每个元素包含俩个键值对 Conllection单列集合 单列集合常用的主要是下列几种 List集合 List系列集合的特点&#xff1a;添加元素是有序、可重复、有索引 这里我们来试一下ArrayList ArrayList<String&g…

Spring OAuth2:开发者的安全盾牌!(上)

何利用Spring OAuth2构建坚不可摧的安全体系&#xff1f;如何使用 OAuth2 从跨域挑战到性能优化&#xff0c;每一个环节都为你的应用保驾护航&#xff1f; 文章目录 Spring OAuth2 详解1. 引言简述OAuth2协议的重要性Spring Framework对OAuth2的支持概述 2. 背景介绍2.1 OAuth2…

智能仓储物流系统(WMS)系列-管理查询调整

好的应用系统应是细分简单&#xff0c;界面简洁易操作&#xff0c;程序代码简洁易懂的。

史上最全排序算法整理(2)

本篇文章我们将接着上篇继续介绍常见的排序算法&#xff0c;有需要的小伙伴可以移步史上最全排序算法整理&#xff08;1&#xff09;查看相关内容哦 1.冒泡排序 1.1基本思想 在待排序的一组数中&#xff0c;将相邻的两个数进行比较&#xff0c;若前面的数比后面的数大就交换两…

gitlab 创建 ssh 和 token

文章目录 一、创建ssh key二、将密钥内容复制到gitlab三、创建token 一、创建ssh key 打开控制台cmd&#xff0c;执行命令 ssh-keygen -t rsa -C xxxxx xxxxx是你自己的邮箱 C:\Users\xx\.ssh 目录下会创建一个名为id_rsa.pub的文件&#xff0c;用记事本打开&#xff0c;并…

基于深度学习的中文情感分析系统python flask

基于python的毕业设计 基于深度学习的中文情感分析系统(flask)(源码说明文档演示) 毕业设计课程设计期末大作业、课程设计、高分必看&#xff0c;下载下来&#xff0c;简单部署&#xff0c;就可以使用。 包含&#xff1a;项目源码、数据库脚本、软件工具等&#xff0c;该项目…

【Spring Cloud】微服务工程中的服务注册与发现配置中心-Consul

Catalog Spring Cloud Consul一、需求二、是什么三、优点四、缺点五、怎么用六、细节 Spring Cloud Consul 一、需求 多个微服务之间通过RestTemplate中的api相互调用&#xff0c;一般要写死微服务的IP地址和端口号&#xff0c;相当于硬编码&#xff0c;非常不灵活&#xff0…

MyBatis出现:SQLSyntaxErrorException: Unknown column ‘XXX‘ in ‘field list‘

<update id"updateStudent">update tb_students set stu_name${stuName},stu_gender${stuGender},stu_age${stuAge},stu_tel${stuTel}where stu_num ${stuNum}</update> 本质上来说&#xff0c;是Mybatis使用上的错误&#xff0c;不熟悉&#xff0c;理…

SQL函数--union all 使用方法及案例

1. 使用方法 在 SQL 中&#xff0c;UNION ALL 操作用于结合两个或更多 SELECT 语句的结果集&#xff0c;包括所有匹配的行&#xff0c;甚至包括重复的行。这与 UNION 不同&#xff0c;因为 UNION 会自动删除重复的行。 满足条件&#xff1a; 1、两个select查询的列的数量必须相…

Ai速递5.29

全球AI新闻速递 1.摩尔线程与无问芯穹合作&#xff0c;实现国产 GPU 端到端 AI 大模型实训。 2.宝马工厂&#xff1a;机器狗上岗&#xff0c;可“嗅探”故障隐患。 3.ChatGPT&#xff1a;macOS 开始公测。 4.Stability AI&#xff1a;推出Stable Assistant&#xff0c;可用S…