【极速前进】20240422:预训练RHO-1、合成数据CodecLM、网页到HTML数据集、MLLM消融实验MM1、Branch-Train-Mix

一、RHO-1:不是所有的token都是必须的

论文地址:https://arxiv.org/pdf/2404.07965.pdf
在这里插入图片描述

1. 不是所有token均相等:token损失值的训练动态

​ 使用来自OpenWebMath的15B token来持续预训练Tinyllama-1B,每1B token保存一个checkpoint。对于每个checkpoint都评估token级别的loss。通过分析token级别loss,发现token的损失值有4种模式:持续高损失值(H->H)、损失值增加(L->H)、损失值下降(H->L)、持续低损失值(L->L)。其中,H->L的token占26%;L->L的token占51%;H->H的token占11%;L->H的token占12%。L->L和H->H的token损失值在训练中方差高,可视化后发现其中包含很多噪音。

​ 综上,训练过程中token的损失值并不像总体损失值那边平滑减少,token损失值之间存在复杂动态。因此,训练过程中选择合适的token,可以稳定训练并提高训练效率

2. 选择性语言建模

​ 整体思路:a. 在高质量数据上训练reference模型;b. 使用该模型对预训练的token评估损失值;c. 选择性训练语言模型,专注在训练模型和reference模型之间高损失值的token。

reference建模。使用高质量数据训练reference模型(RM),训练方式采用标准的交叉熵。token x i x_i xi的损失值计算为:
L ref ( x i ) = − log ⁡ P ( x i ∣ x < i ) \mathcal{L}_{\text{ref}}(x_i)=-\log P(x_i|x_{<i}) \\ Lref(xi)=logP(xix<i)
通过损失值可以使语言模型专注在更具影响力的token上。

选择性预训练。自回归语言模型训练的损失函数为:
L CLM ( θ ) = − 1 N ∑ i = 1 N log ⁡ P ( x i ∣ x < i ; θ ) \mathcal{L}_{\text{CLM}}(\theta)=-\frac{1}{N}\sum_{i=1}^N\log P(x_i|x_{<i};\theta) \\ LCLM(θ)=N1i=1NlogP(xix<i;θ)
其中 θ \theta θ是模型参数, N N N是序列长度, x i x_i xi是序列中第i个token, x < i x_{<i} x<i表示第i个token前的所有token。选择性语言建模重点关注那些与reference模型相比具有高损失值的token。超额损失值 L Δ \mathcal{L}_{\Delta} LΔ的定义为:
L Δ ( x i ) = L θ ( x i ) − L ref ( x i ) \mathcal{L}_{\Delta}(x_i)=\mathcal{L}_{\theta}(x_i)-\mathcal{L}_{\text{ref}}(x_i) \\ LΔ(xi)=Lθ(xi)Lref(xi)
这里引入一个选择比例k%,用于根据超额损失值来确定包含token的比例。选择性token的交叉熵损失值为:
L SLM ( θ ) = − 1 N × k % ∑ i = 1 N I k % ( x i ) ⋅ log ⁡ P ( x i ∣ x < i ; θ ) \mathcal{L}_{\text{SLM}}(\theta)=-\frac{1}{N\times k\%}\sum_{i=1}^N I_{k\%}(x_i)\cdot\log P(x_i|x_{<i};\theta) \\ LSLM(θ)=N×k%1i=1NIk%(xi)logP(xix<i;θ)
其中 N × k % N\times k\% N×k%表示超额损失值落在前k%的token数量。指示函数 I k % ( x i ) I_{k\%}(x_i) Ik%(xi)定义为
I k % ( x i ) = { 1 若 x i 的 L Δ 位于前 k % 0 否则 I_{k\%}(x_i)=\begin{cases} 1&若x_i的\mathcal{L}_{\Delta}位于前k\% \\ 0&否则\\ \end{cases} \\ Ik%(xi)={10xiLΔ位于前k%否则
这可以确定语言建模更多关注最有用的token。

3. 实验结果

Few-shot CoT推理结果。相比直接继续预训练,RHO-1-Math在1B和7B模型上实现16.5%和10.4%的平均few-shot准确率改善。多训练几个epoch能够持续增加few-shot准确率。DeepSeekMath-7B在500Btoken上预训练和RHO-1-7B在15Btoken上的效果相当。

工具集成推理结果。RHO-1-1B和RHO-1-7B在MATH数据集实现了SOTA。

通用预训练结果。相比于直接继续预训练,选择性语言建模(SLM)在15个基准上平均改善幅度为6.8%,这种改善在代码和数学中尤其明显。

二、CodecLM:使用定制合成数据对齐LM

论文地址:https://arxiv.org/pdf/2404.05875.pdf
在这里插入图片描述

1. LLM用作指令编解码器

LLM作为指令元数据编码器。这里编码器的作用是将种子指令 D s = { I i } i = 1 n \mathcal{D}_s=\{I_i\}_{i=1}^n Ds={Ii}i=1n编码为指令元数据。具体来说,元数据包含两个关键因素:用例(use case)和技能(skills)。用例描述了预期的任务(例如:问答或者创意写作),技能则是LLM成功回答指令所需要的知识。通常,每个指令包含单个用例和多个技能。对于每个指令 I i I_i Ii,使用LLM编码器 f s f_s fs抽取对应的用例 u i u_i ui和一组技能 s i s_i si,这样就能拥有一组元数据 M = { ( u i , s i ) } i = 1 n \mathcal{M}=\{(u_i,\textbf{s}_i)\}_{i=1}^n M={(ui,si)}i=1n

LLM作为指令生成解码器。给定元数据 M \mathcal{M} M,通过一种生成和合成范式将其解码为合成指令。

2. 通过Self-Rubrics进行指令合成

​ 研究表明更复杂的指令能够改善对齐效果。常用的方法是人类专家来撰写复杂指令的指导信息,例如添加推理步骤或约束。但是,这种方式无法满足多样化指令的要求,需要为不同的任务量身定制指导信息。

​ Self-Rubrics指导LLM生成用于评估指令复杂度的元评价准则,然后基于这些准则生成一组增强复杂度的动作。对于元数据 ( u i , s i ) (u_i,\textbf{s}_i) (ui,si),对应的生成动作集合为 a i \textbf{a}_i ai。例如,当用例是"商业计划制定"且技能是"市场研究和规划",通用准则"添加推理步骤"就有些不合适。Self-Rubrics则会生成类似于"添加SWOT分析"和"包含市场竞争对手的比较"这样的动作。

​ 在获得动作 { a i } i = 1 n \{\textbf{a}_i\}_{i=1}^n {ai}i=1n后,就可以利用 f s f_s fs将指令复杂化。

3. 通过对比过滤进行指令选择

​ 对比过滤的目标是为LLM f t f_t ft选择更有效的指令。设 N \mathcal{N} N是所有自然语言序列的空间,强LLM为 f s : N → N f_s:\mathcal{N}\rightarrow\mathcal{N} fs:NN,目标LLM为 f t : N → N f_t:\mathcal{N}\rightarrow\mathcal{N} ft:NN,评估函数为 S : N → R S:\mathcal{N}\rightarrow\mathbb{R} S:NR。评估函数使用 f s f_s fs来实现。

​ 给定一个指令 I ∈ N I\in\mathcal{N} IN,获得两个LLM的响应 f s ( I ) f_s(I) fs(I) f t ( I ) f_t(I) ft(I),定义质量差距为 G ( I ) = S ( f s ( I ) ) − S ( f t ( I ) ) G(I)=S(f_s(I))-S(f_t(I)) G(I)=S(fs(I))S(ft(I))。当 ∣ G ( I ) ∣ > θ |G(I)|>\theta G(I)>θ时,要么 f s f_s fs生成的质量高,则将 ( I , f s ( I ) ) (I,f_s(I)) (I,fs(I))添加至最终数据集 D g \mathcal{D}_g Dg;要么 f t f_t ft生成的质量高,则将 ( I , f t ( I ) ) (I,f_t(I)) (I,ft(I))添加至 D g \mathcal{D}_g Dg。若 ∣ G ( I ) ∣ < θ |G(I)|<\theta G(I)<θ,则不使用该数据。

4.实验结果
在这里插入图片描述

三、WebSight数据集:网页截图到HTML转换

论文地址:https://arxiv.org/pdf/2403.09029.pdf

1. 目标

​ 构建一个网页截图到HTML代码的数据集,从而提高VLM将图片转换为网页源代码的能力。

2. 构造过程

​ (1) 生成多样化的网站概念:利用Mistral-7B-Instruct生成数百万个唯一的网站概念和设计。

​ (2) 使用Tailwind CSS而不是传统CSS。

​ (3) 使用代码LLM生成HTML代码:利用Deepseek-Coder-33b-instruct来生成HTML代码。此外,为了解决HTML代码中没有图片的问题,使用了一种基于关键词生成图片的api。经过过滤后,大约留下2百万网页。

​ (4) 截图捕获:使用Playwright来可视化和捕获生成的HTML网页。

3. 使用WebSight微调基础VLM

​ 将网页截图转换为HTML代码的模型需要的能力包括:(1) 描述图像中文本的OCR能力;(2) 对网页中元素排列的空间理解能力;(3) 目标检测能。

​ 模型使用基于Mistral-7B和SigLIP-SO400M构造的基础模型。

4.结果

​ 对于简单的网页转换来说效果还可以并且有一定的泛化能力。

​ 但是,在处理复杂网页布局、过多文本内容或者设计与训练数据有很大不同时,效果会比较差。这也表明该模型并没有完全掌握HTML+Tailwind CSS语法。

四、MM1:来自多模态LLM预训练的方法、分析和洞见

论文地址:https://arxiv.org/pdf/2403.09611.pdf

​ 本文的目标是探索模型架构、数据和训练过程对于多模态LLM(MLLM)的影响。通过对不同组件的消融来验证效果,包括:图像编码器、视觉-语言连接器、预训练数据和语言模型。使用zero-shot和few-shot在各种captioning和VQA任务上进行测试。

1. 模型架构消融

图像编码器消融

​ 大多数MLLM使用CLIP的图像编码器,也有一些工作使用纯视觉自监督模型,例如DINOv2。总的来说,视觉编码器的选择对下游的结果有显著的影响。这里主要是对图像分辨率和图像编码器目标函数进行消融。

​ 视觉编码器的消融结果:图像分辨率影响最大,其次才是模型尺寸和训练数据。此外,对比损失函数的效果往往高于重构的损失函数。

视觉-语言连接器。该组件的目标是将视觉表示转换至LLM空间,消融的组件包括:Average Pooling、Attention Pooling和Convolutional Mapping。

​ 视觉-语言连接器的消融结果:视觉token的数量和图像分辨率最重要,VL连接器类型几乎没有影响。

2. 预训练数据消融

​ 有两种类型的数据常用于训练MLLM:一种是成对文本和图像的captioning数据,另一种是来自于网络的交错图像文本数据。captioning数据中的文本往往与图像高度相关,而交错数据更长但相关度低。

​ 消融结果1:交错数据能改善few-shot和纯文本的能力,captioning数据有益于zero-shot的能力。

​ 消融结果2:纯文本数据有助于few-shot和纯文本的效果。

​ 消融结果3:仔细混合图像和文本数据能够产生最佳的多模态效果且保持文本的性能。

​ 消融结果4:合成数据有助于few-shot的学习。

3. 最终模型

​ 图像编码器:由于分辨率的重要性,使用分辨率为378*378的ViT-H。

​ 视觉-语言连接器:使用144个token的连接器,实际架构选择了C-Abstractor。

​ 数据:45%的交叉图文数据、45%的成对图文数据、10%的纯文本数据。
在这里插入图片描述

4. 监督微调

​ SFT数据遵循LLaVA-1.5和LLaVA-NeXT,并从各个数据集收集了1.45M的SFT样本。

​ 为了支持更高的分辨率,使用了两种方法:(1) 位置插值;(2) 子图分解。

与SOTA相比。MM1-3B-Chat和MM1-7B-Chat超越了所有同尺寸模型。MoE模型都比稠密模型效果好。MM1-30B-Chat在一些任务上优于Emu2-Chat-37B和CogVLM-30B。全面优于LLaVA-NeXT。

分辨率的影响。提升分辨率能够提高效果。

预训练的影响。预训练可以显著改善效果。

SFT后few-shot CoT推理。归功于交错数据,MM1具有few-shot的能力。

五、Branch-Train-MiX

论文地址:https://arxiv.org/pdf/2403.07816.pdf

​ 给定现有的LLM M \mathcal{M} M,目标是提高其在 N N N个专业领域的表现。具体的方式是通过在N个不同的数据集上进行继续预训练 D : = { D 1 , … , D N } \mathcal{D}:=\{D_1,\dots,D_N\} D:={D1,,DN}

1. Branch&Train:并行专家训练

​ 使用种子模型 M \mathcal{M} M进行训练,得到N个专家LLM { M 1 , … , M N } \{\mathcal{M}_1,\dots,\mathcal{M}_N\} {M1,,MN},每个模型 M i \mathcal{M}_i Mi都在对应数据集 D i D_i Di上用相同方法进行预训练。因此,每个专家都是独立于其他专家进行训练的,所以可以进行N路并行训练。

​ 早期的Branch-Train-Merge方法在推理时通过确定领域来选择专家,通常多个专家被选择且最终的输出分布是next token的简单平均。本文的BTX方法会将领域专家合并为单个LLM,然后进一步微调

2. Mix:将独立专家合并为MoE

​ 这里利用MoE的方法合并领域专家模型 M i \mathcal{M}_i Mi。然而,相比于经典方法来混合 M i \mathcal{M}_i Mi的最终输出,这里对Transformer每层都进行一个细粒度的混合。令 FF i l ( x ) \text{FF}_i^l(x) FFil(x)表示第i个专家 M i \mathcal{M}_i Mi的第l层的前馈子层,那么合并后MoE层的计算为:
FF MoE l ( x ) = ∑ i = 1 N g i ( W l x ) FF i l ( x ) \text{FF}_{\text{MoE}}^l(x)=\sum_{i=1}^Ng_i(W_lx)\text{FF}_i^l(x) \\ FFMoEl(x)=i=1Ngi(Wlx)FFil(x)
W l W_l Wl是线性变换层, g g g是路由函数,其通常是稀疏输出并仅连通部分专家。若对应的路由输出为0,可以跳过 FF i l ( x ) \text{FF}_i^l(x) FFil(x)的计算,因此 FF MoE l ( x ) \text{FF}_{\text{MoE}}^l(x) FFMoEl(x)计算要比计算所有领域专家效率高。在本文中,使用Top-K路由,即 g ( W l x ) = SoftMax ( TopK ( W l x ) ) g(W_lx)=\text{SoftMax}(\text{TopK}(W_lx)) g(Wlx)=SoftMax(TopK(Wlx))

​ 对于自注意力子层,通过简单平均权重来合并不同的专业。这种做的原因是自注意力层相比FFN层更不专业化。对于embedding层等也使用权重平均的方式。

​ 这里引入的新参数仅包括路由变换参数 W l W_l Wl,其在整个网络中可以忽略不计。但是,这些参数需要微调。

3. 变体

负载均衡。MoE模型常见的问题是dead experts,即路由永远不激活该专家。这里通过一个额外的损失项来鼓励平等利用。具体来说,
L LB = α N ∑ i = 1 N u i p i 其中 u i = 1 ∣ β ∣ ∑ x ∈ β g i ( W l x ) 且 p i = 1 ∣ β ∣ ∑ x ∈ β Softmax i ( W l x ) \mathcal{L}_{\text{LB}}=\alpha N\sum_{i=1}^N u_i p_i\quad其中u_i=\frac{1}{|\beta|}\sum_{x\in\beta}g_i(W_lx)且p_i=\frac{1}{|\beta|}\sum_{x\in\beta}\text{Softmax}_i(W_lx) \\ LLB=αNi=1Nuipi其中ui=β1xβgi(Wlx)pi=β1xβSoftmaxi(Wlx)
其中 β \beta β是当前数据的batch, α \alpha α是超参数。

路由方法。Switch、Soft routing、Sample Top-1。

拆分专家。MoE层的模块数量与训练的领域数量相当,每个模块对于一个领域。通过简单的将每个领域的FF子层划分为更多的块就能增加专家的数量。给定 N N N个领域,FF的激活尺寸为 d FF d_{\text{FF}} dFF,将FF层划分为 C C C块,每块的维度 d FF / C d_{\text{FF}}/C dFF/C。这样,最终MoE层将有MC个模块。

4. 实验结果

领域专家在特定任务上表现卓越。在代码和数学领域表现明显,其数学专家也能够帮助提升代码能力。但在其他任务上效果下降。

BTX改进了专家擅长的所有任务。BTX训练的模型在所有专家领域都有所改进,且对其他领域效果没有影响。

划分为 C C C块,每块的维度 d FF / C d_{\text{FF}}/C dFF/C。这样,最终MoE层将有MC个模块。

4. 实验结果

领域专家在特定任务上表现卓越。在代码和数学领域表现明显,其数学专家也能够帮助提升代码能力。但在其他任务上效果下降。

BTX改进了专家擅长的所有任务。BTX训练的模型在所有专家领域都有所改进,且对其他领域效果没有影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1903.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

夜鸦国际服账号验证怎么办 夜鸦国际服账号认证的详细教程

夜鸦国际服账号验证怎么办 夜鸦国际服账号认证的详细教程 今天为大家带来的是《夜鸦》这款游戏&#xff0c;游戏背景是基于13世纪欧洲背景的MMORPG游戏&#xff0c;这款游戏以其沉浸式的游戏体验和流畅的打斗为特色。玩家可以选择战士、剑士、猎人或女巫等角色&#xff0c;体验…

AQS(AbstractQueuedSynchronizer)队列同步器源码解读

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 目录 1. 前言 2. AOS、AQS、AQLS的区别 3. AQS的底层原理 3.1. 核心思想 3.2. 数…

李廉洋:4.23黄金休市之后大幅下跌,原油小幅度上涨。走势分析!

今年以来推动金价上涨的因素是亚洲的需求&#xff0c;很可能来自各国央行。最近又有零售买盘和一些金融买盘作为补充。目前的问题是&#xff0c;不断上升的债券收益率正在争夺资金。美国2年期国债的收益率接近5%&#xff0c;在美联储降息导致收益率开始下降之前&#xff0c;这仍…

JavaScript权威指南(第7版) 笔记 - 第 7 章 数组

能用代码说清楚的&#xff0c;绝不多废话&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; Linux创始人Linus的名言&#xff1a;Talk is cheap&#xff0c;show me the code ! &#xff0c;博主技术博文会精心给出能说明问题的范例代码&#xff01;…

Qt实现XYModem协议(五)

1 概述 XMODEM协议是一种使用拨号调制解调器的个人计算机通信中广泛使用的异步文件运输协议。这种协议以128字节块的形式传输数据&#xff0c;并且每个块都使用一个校验和过程来进行错误检测。使用循环冗余校验的与XMODEM相应的一种协议称为XMODEM-CRC。还有一种是XMODEM-1K&am…

35K的鸿蒙音视频开发岗位面经分享~

一个月前&#xff0c;阿里云在官网音视频终端 SDK 栏目发布适配 HarmonyOS NEXT 的操作文档和 SDK&#xff0c;官宣 MediaBox 音视频终端 SDK 全面适配 HarmonyOS NEXT。 此外&#xff0c;阿里云播放器 SDK 也在华为开发者联盟官网鸿蒙生态伙伴 SDK 专区同步上线&#xff0c;面…

面向对象设计与分析40讲(25)中介模式、代理模式、门面模式、桥接模式、适配器模式

文章目录 门面模式代理模式中介模式 之所以把这几个模式放到一起写&#xff0c;是因为它们的界限比较模糊&#xff0c;结构上没有明显的差别&#xff0c;差别只是语义上。 这几种模式在结构上都类似&#xff1a; 代理将原本A–>C的直接调用变成&#xff1a; A–>B–>…

负采样重要吗?它的理论与应用综述

Does Negative Sampling Matter? A Review with Insights into its Theory and Applications 负采样重要吗&#xff1f;它的理论与应用综述 Does Negative Sampling Matter? A Review with Insights into its Theory and Applications Zhen Yang, Ming Ding, Tinglin Huang,…

基于python实现web漏洞挖掘技术的研究(django)

基于python实现web漏洞挖掘技术的研究(django) 开发语言:Python 数据库&#xff1a;MySQL所用到的知识&#xff1a;网络爬虫&#xff0c;SQL注入&#xff0c;XSS漏洞工具&#xff1a;pycharm、Navicat、Maven 系统的实现与漏洞挖掘 系统的首页面 此次的系统首页面是登录的页…

BootstrapAdmin Net7:基于RBAC的后台管理框架,实现精细化权限管理与多站点单点登录

BootstrapAdmin Net7&#xff1a;基于RBAC的后台管理框架,实现精细化权限管理与多站点单点登录 摘要 随着企业信息化建设的不断深入&#xff0c;后台管理系统在企业运营中扮演着越来越重要的角色。本文介绍了一款基于RBAC&#xff08;Role-Based Access Control&#xff09;的…

291个地级市资源错配指数、劳动和资本相对扭曲指数(2006-2021年)

01、数据介绍 资源错配指数&#xff08;Misallocation Index&#xff09;是一个用于衡量资源配置效率的指标&#xff0c;它衡量的是生产要素的配置是否合理&#xff0c;是否达到了最优的状态。资源错配指数越高&#xff0c;资源的利用效率越低。资源错配指数主要用于衡量各种生…

企业实施定制鞋厂ERP软件需要注意哪些问题?

企业实施定制鞋厂ERP软件是个复杂的管理系统工程&#xff0c;为了成功地为企业定制实施ERP软件&#xff0c;需要注意和解决几个关键的问题&#xff1a; . 确立ERP系统实施和定制的决策者&#xff1b;. 做好前期咨询与调研工作&#xff1b;. 做好系统产品或项目迭代规划&#x…

Uds诊断协议的请求和响应的寻址

一根总线上挂载着很多ECU&#xff0c;那么基于CAN协议UDS的诊断请求报文&#xff0c;诊断仪是如何发给ECU的&#xff1f;如何精准的找到想要诊断的那个ECU&#xff1f;ECU又是如何将诊断响应的报文返回给诊断仪&#xff1f; 在UDS协议中&#xff0c;规定了诊断请求和响应报文发…

记录:阿里云服务器网站搭建(3)

Docker安装配置Tomcat 拉取镜像 docker pull tomcat:8启动一个tomcat容器用于拷贝配置文件 docker run -d -p 8080:8080 --name tomcat tomcat:8拷贝容器内tomcat配置文件和日志到本地准备映射 docker cp tomcat:/usr/local/tomcat/conf /mydata/tomcat/confdocker cp tomca…

WebStorm2024安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 WebStorm是一款由JetBrains公司开发的强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;专门用于前端开发。它提供了丰富的功能和工具&#xff0c;包括代码编辑器、调试器、版本控制集成等&#xff0c;使开发人员能够更…

LocalAi,Ollama+AnythingLLM搭建部署本地大模型AI知识库,汉化版本

AnythingLLM 是一个全栈应用程序&#xff0c;您可以使用商业现成的 LLM 或流行的开源 LLM 和 vectorDB 解决方案来构建私有 ChatGPT&#xff0c;无需任何妥协&#xff0c;您可以在本地运行&#xff0c;也可以远程托管并能够智能聊天以及您提供的任何文件。 AnythingLLM 将您的文…

人工智能大模型培训老师叶梓 探索知识库问答中的查询图生成:处理多跳复杂问题的新方法

在人工智能领域&#xff0c;基于知识库的问答&#xff08;KBQA&#xff09;技术正变得越来越重要。它使得机器能够理解自然语言问题&#xff0c;并从结构化的知识库中检索答案。然而&#xff0c;面对多跳复杂问题&#xff0c;传统的KBQA方法往往力不从心。近期&#xff0c;研究…

芒果超媒的“乘风破浪”,差了一点市场海浪的反馈

4月21日晚间&#xff0c;芒果超媒发布了2023年度&2024一季度报告。 芒果超媒2023年实现营业收入146.28亿元&#xff0c;同比增长4.66%&#xff1b;净利润35.56亿元&#xff0c;同比增长90.73%&#xff1b;基本每股收益1.90元。公司拟每10股派发现金红利1.8元。2024年第一季…

数据可视化(八):Pandas时间序列——动态绘图,重采样,自相关图,偏相关图等高级操作

Tips&#xff1a;"分享是快乐的源泉&#x1f4a7;&#xff0c;在我的博客里&#xff0c;不仅有知识的海洋&#x1f30a;&#xff0c;还有满满的正能量加持&#x1f4aa;&#xff0c;快来和我一起分享这份快乐吧&#x1f60a;&#xff01; 喜欢我的博客的话&#xff0c;记得…

腾讯云服务器价格明细表2024年最新(CPU内存/带宽/磁盘)

腾讯云服务器价格明细表2024年最新&#xff08;CPU内存/带宽/磁盘&#xff09;腾讯云服务器租用优惠价格表&#xff1a;轻量应用服务器2核2G3M价格61元一年&#xff0c;2核2G4M价格99元一年、135元15个月、540元三年&#xff0c;2核4G5M带宽165元一年、252元15个月、756元3年&a…