YOLOv10最详细全面讲解1- 目标检测-准备自己的数据集(YOLOv5,YOLOv8均适用)

YOLOv10没想到出来的如此之快,作为一名YOLO的爱好者,以YOLOv5和YOLOv8的经验,打算出一套从数据集装备->环境配置->训练->验证->目标追踪全系列教程。请大家多多点赞和收藏!!!YOLOv5和YOLOv8亲测全都适用
废话不多说,直接开搞!!!

1.准备图片文件

这里也没什么好说的,关键要提一点就是,将所有图片文件先放入到一个目录文件夹中,便于后续划分训练集,测试集和验证集,同时不能有重复文件名,每一张图片最好取一个合适的名字,例如下图,我的每个图片前缀fish1表示来自fish1视频,后缀000001表示第一帧画面。图片文件jpg、png都可以,我这里是.jpg
在这里插入图片描述

2.准备labels标签文件

这里很关键,很多同学可能之前用的另外的模型训练,用的labels是coco格式或者其他格式,但是这里需要统一转成YOLO格式的labels。
准备一个目录,准备存放所有的labels标签文件。如下图,我的文件夹中已经准备好了所有的标签文件,可以看到,文件名与上述的图片文件名是一一对应的,只是这里都是.txt文件。
在这里插入图片描述
我们再来看每个txt文件里面到底是什么?下面是我的fish1_000001.txt文件内容:

0 0.441753 0.815461 0.061021 0.042763
0 0.395895 0.759868 0.066198 0.046053
0 0.497781 0.744737 0.060651 0.039474
0 0.575629 0.787171 0.059541 0.042763
0 0.566568 0.727303 0.059911 0.059868
0 0.561206 0.691447 0.058802 0.096053
0 0.523669 0.681908 0.054734 0.042763
0 0.549741 0.648355 0.061760 0.038816
0 0.622411 0.646382 0.051775 0.069079
0 0.700999 0.786184 0.056583 0.080263
0 0.688425 0.724671 0.041050 0.091447
0 0.679734 0.651974 0.062870 0.040789
0 0.669009 0.602632 0.044379 0.053947
0 0.614645 0.605263 0.049556 0.040789
0 0.568047 0.573355 0.049556 0.051974
0 0.529216 0.597697 0.052515 0.057237
0 0.470969 0.637171 0.057322 0.061184
0 0.452663 0.610197 0.063609 0.050658
0 0.396820 0.694408 0.054734 0.055921
0 0.340843 0.636322 0.053254 0.044737
0 0.280325 0.584211 0.051775 0.046053
0 0.346339 0.583553 0.057322 0.048684
0 0.711169 0.438158 0.024408 0.080263
0 0.681583 0.399342 0.023669 0.063158
0 0.367973 0.515132 0.036243 0.076316
0 0.353365 0.551645 0.042530 0.050658
0 0.296783 0.542763 0.029956 0.082895
0 0.249815 0.515461 0.024038 0.075658
0 0.286612 0.434868 0.035503 0.075000
0 0.286428 0.404276 0.019601 0.059868
0 0.375899 0.377303 0.040680 0.059868
0 0.560466 0.312171 0.030695 0.053289
0 0.538092 0.280592 0.011095 0.034868
0 0.543454 0.226316 0.028476 0.040789
0 0.357618 0.301974 0.017751 0.061842
0 0.386280 0.271711 0.037352 0.032895
0 0.397374 0.195395 0.040311 0.030263
0 0.280695 0.127632 0.035503 0.044737
0 0.338203 0.103289 0.041050 0.032895
0 0.405141 0.130263 0.043269 0.028947
0 0.429364 0.150987 0.043639 0.032237
0 0.429179 0.469079 0.038831 0.077632
0 0.427885 0.563158 0.048077 0.061842
0 0.482618 0.563487 0.064349 0.037500
0 0.551960 0.517105 0.051405 0.061842
0 0.549001 0.501316 0.040311 0.035526
0 0.718565 0.525329 0.028107 0.083553
0 0.655695 0.468750 0.023669 0.082237
0 0.697115 0.466776 0.025148 0.078289
0 0.526759 0.414306 0.034834 0.074178
0 0.533284 0.438158 0.039941 0.088158
0 0.506102 0.464145 0.029956 0.086184
0 0.477905 0.518336 0.045632 0.035868
0 0.387759 0.472039 0.049186 0.050658
0 0.381074 0.085451 0.036084 0.032638
0 0.394362 0.080737 0.032274 0.035539
0 0.323364 0.128533 0.037740 0.021592
0 0.435300 0.400431 0.040496 0.046112
0 0.372879 0.218283 0.038384 0.046645
0 0.337794 0.199641 0.031705 0.033257
0 0.291575 0.334826 0.022722 0.063849
0 0.245625 0.194227 0.015614 0.058296
0 0.644136 0.353197 0.014138 0.071395
0 0.589170 0.371263 0.016498 0.079026
0 0.627219 0.565461 0.063609 0.044079
0 0.626233 0.482260 0.031350 0.051836
0 0.630899 0.382102 0.019793 0.078401
0 0.561601 0.367086 0.024320 0.070987
0 0.585442 0.457530 0.034834 0.066480
0 0.255194 0.422036 0.016150 0.083941
0 0.314734 0.420063 0.017419 0.091270
0 0.268748 0.304063 0.033887 0.059151
0 0.266533 0.270260 0.033251 0.067046
0 0.326387 0.277299 0.022485 0.063099
0 0.318628 0.231951 0.022167 0.060283
0 0.258423 0.212891 0.034530 0.047336
0 0.274588 0.165941 0.032992 0.045776
0 0.358741 0.198010 0.014479 0.047928
0 0.367082 0.158563 0.041420 0.032928
0 0.601516 0.529605 0.061021 0.040789
0 0.301596 0.261954 0.022874 0.055553
0 0.312095 0.159832 0.032837 0.040757
0 0.334209 0.162372 0.036901 0.040559
0 0.367411 0.122694 0.033750 0.026086
0 0.411428 0.278618 0.014423 0.037500
0 0.389238 0.328289 0.026257 0.056579

可以看到里面是一行一行的数据组成,那么每行数据的每个数据分别表示什么意思呢?
以第一行数据0 0.441753 0.815461 0.061021 0.042763为例,第一个0表示目标框框住物体的类别,我的数据集中只有鱼一个类别,因此都是每一行的第一个数据都是0,如果你自己的数据集有四类,假设有猫,狗,人,鱼,那么你可以将0-猫,1-狗,2-人,3-鱼。
再看后面几个小数, 0.441753 0.815461表示的目标框的中心点,0.061021 0.042763表示的是目标框的长和宽。这里又有同学要问了,为什么中心点和长宽都是小数?这就和YOLO创始人定义的labels格式有关了,这是人家定义的规则,我们照着做就行。那么具体是什么规则呢?
解释如下:
在这里插入图片描述
因此请各位自己根据自己标注的目标框转换成对应的YOLO目标框格式数据。上述我的该label文件中有87行数据,表示的是这一张图片中有87个目标框,每个目标框对应的类别都是0-鱼。如果有不知道如何转数据的同学,点赞收藏该博客然后关注我私聊,单独一对一教学

3.按比例划分数据集

在各位同学按照前三步准备好了图片和labels标签的前提下,按照YOLO系列的官方推荐比例训练集:验证集:测试集=7:2:1划分。
首先提前定义好存放训练集、验证集和测试集的空文件夹:
文件夹目录如下:
在这里插入图片描述
train、valid和test目录中都是如下结构:
在这里插入图片描述

提供以下脚本:

import os
import random
import shutil# 设置目录路径
image_dir = 'D:/ModelsDatas/test/allimgs'  # 改成你自己的原图片目录
label_dir = 'D:/ModelsDatas/test/alllables'  # 改成你自己的原标签目录# 获取图片和txt文件列表
images = os.listdir(image_dir)
labels = os.listdir(label_dir)# 随机打乱图片列表
random.shuffle(images)# 计算训练集、验证集和测试集的数量
total_images = len(images)
train_count = int(total_images * 0.7)
val_count = int(total_images * 0.2)
test_count = total_images - train_count - val_count# 分配文件到训练集、验证集和测试集
train_images = images[:train_count]
val_images = images[train_count:train_count + val_count]
test_images = images[train_count + val_count:]# 移动文件到对应的目录
for image in train_images:# 移动图片和标签到训练集目录shutil.move(os.path.join(image_dir, image), 'D:/ModelsDatas/YOLO_datasets/train/images') # 请改成你自己的训练集存放图片的文件夹目录shutil.move(os.path.join(label_dir, image[:-4]+'.txt'), 'D:/ModelsDatas/YOLO_datasets/train/labels')# 请改成你自己的训练集存放标签的文件夹目录for image in val_images:# 移动图片和标签到验证集目录shutil.move(os.path.join(image_dir, image), 'D:/ModelsDatas/YOLO_datasets/valid/images')# 请改成你自己的验证集存放图片的文件夹目录shutil.move(os.path.join(label_dir, image[:-4] + '.txt'), 'D:/ModelsDatas/YOLO_datasets/valid/labels')# 请改成你自己的验证集存放标签的文件夹目录for image in test_images:# 移动图片和标签到测试集目录shutil.move(os.path.join(image_dir, image), 'D:/ModelsDatas/YOLO_datasets/test/images')# 请改成你自己的测试集存放图片的文件夹目录shutil.move(os.path.join(label_dir, image[:-4] + '.txt'), 'D:/ModelsDatas/YOLO_datasets/test/labels')# 请改成你自己的测试集存放标签的文件夹目录

4.准备yaml文件,用于后续训练

文件命名为data.yaml,建议先放在与train、test和valid同级目录下,如下所示:
在这里插入图片描述
data.yaml中文件内容和说明如下:

names: # class names- 0:fish # 类别号: 类别名称 (需要改成自己的)#-1:cat #如果还有其他类别,以此往下加就行了,类别号请认真和自己当时目标框labels文件中的一一对应#-2:dog
nc: 1 # number of classes 数据集中一共有几个类别,参考上面说的
path: ultralytics/datasets/det/fish2 # 数据集路径(需要改成自己的,也就是train、test和valid目录的上级目录)
train: train/images # 训练集路径(相对于数据集路径)
val: valid/images # 验证集路径(相对于数据集路径)
test: test/images # 测试集路径(相对于数据集路径)

如上,YOLO需要的自己数据集就构建完成了,接下来就是训练啦!!!还请各位同学多多点赞收藏,你们的认可是我继续更新更好文章的最大动力!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/18703.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

dubbo复习:(13)把服务划分为不同的group 和version,只有服务端和客户端group和version匹配才能通信

一、接口定义 package cn.edu.tju.service;public interface DevelopService {String invoke(String param); }二、两个版本的实现: package cn.edu.tju.service;import org.apache.dubbo.config.annotation.DubboService;DubboService(group "group1"…

bert模型数据集加载方式

数据集构造 无论是机器学习还是深度学习对于数据集的构造都是十分重要。 现记录一下PyTorch 的 torch.utils.data.Dataset 类的子类。Dataset 类是PyTorch框架中用于处理数据的基本组件,它允许用户定义自己的数据集类,以满足特定任务的需求。 Dataset…

重学英语:输出的重要性

精通一门外语的四要素:听,说,读,写 输入:听,读 输出:写,说 因为输入是我们可以单独完成,不需要有人互动,所以我们做得最多 输出练习做得很少,…

Redis中的数据结构与内部编码

本篇文章主要是对 Redis 常见的数据结构进行讲解,同时还对其所对应的不同的内部编码进行讲解。希望本篇文章会对你有所帮助。 文章目录 一、五大数据结构 二、数据结构对应的编码方式 String hash list set zset 🙋‍♂️ 作者:Ggggggtm &…

js 面试题学习笔记一

1、什么是防抖和节流?有什么区别?如何实现? 防抖:触发高频事件后N秒内函数只会执行一次,如果N秒高频事件再次被触发,则重新计算时间。(a时间触发,5秒内执行一次,但是第4…

10G UDP协议栈 (9)UDP模块

目录 一、UDP协议简单介绍 二、UDP功能实现 三、仿真 一、UDP协议简单介绍 UDP协议和TCP协议同位于传输层,介于网络层(IP)和应用层之间:UDP数据部分为应用层报文,而UDP报文在IP中承载。 UDP 报文格式相对于简单&am…

电脑出现:excel词典(xllex.dll)文件丢失或损坏的错误提示怎么办?有效的将丢失的xllex.dll修复

当遇到 Excel 提示“词典 (xllex.dll) 文件丢失或损坏”的问题时,通常意味着该动态链接库文件(Dynamic Link Library,DLL),它与拼写检查功能相关联的,无法被正确找到或者合适地使用。那么有什么办法可以解决…

LLVM技术在GaussDB等数据库中的应用

目录 LLVM和数据库 LLVM适用场景 LLVM对所有类型的SQL都会有收益吗? LLVM在OLTP中就一定没有收益吗? GaussDB中的LLVM 1. LLVM在华为应用于数据库的时间线 2. GaussDB LLVM实现简析 3. GaussDB LLVM支持加速的场景 支持LLVM的表达式&#xff1a…

vue项目出现多次ElMessage

问题: 解决方法: let message null if (message null) { message ElMessage.error(“登录过期,请重新登录”); } 最终效果:只出现一个弹框

Orange AIpro Color triangle帧率测试

OpenGL概述 OpenGL ES是KHRNOS Group推出的嵌入式加速3D图像标准,它是嵌入式平台上的专业图形程序接口,它是OpenGL的一个子集,旨在提供高效、轻量级的图形渲染功能。现推出的最新版本是OpenGL ES 3.2。OpenGL和OpenCV OpenCL不同,…

实操专区-第15周-课堂练习专区-漏斗图与金字塔图

实操专区-第15周-课堂练习专区-漏斗图 下载安装ECharts,完成如下样式图形。 代码和截图上传 基本要求:下图3选1,完成代码和截图 完成 3.1.3.16 漏斗图中的任务点 基本要求:2个选一个完成,多做1个加2分。 请用班级学号姓…

银行对公贷款软件业务流程详解

对公贷款业务是指商业银行向企事业单位提供资金支持,用于资本扩充、生产经营、项目建设等方面的融资。其目的在于支持企事业单位的发展,推动经济增长。通过提供资金支持,企事业单位可以获得必要的资金来扩大生产规模、提高生产能力、研发新产…

第8周 分布式事务与数据一致性主流解决方案落地

第8周 分布式事务与数据一致性主流解决方案落地 1. 最终一致性原理与解析2. 微服务的解耦3. 本地消息存储4. 自定义事务管理器5. 本地消息删除********************************************************************************** 本周拓展数据的一致性落地,采用弱…

【Java EE】网络原理——HTTP请求

目录 1.认识URL 2.认识“方法(method)” 2.1GET方法 2.1.1使用Fiddler观察GET请求 2.1.2 GET请求的特点 2.2 POST方法 2.2.1 使用FIddler观察POST方法 2.2.2 POST请求的特点 3.认识请求“报头”(header) 3.1 Host 3.2 C…

Spring MVC 工作流程源码分析

前言: 我们知道 Spring MVC 的核心是前端控制器 DispatcherServlet,客户端所有的请求都会交给 DispatcherServlet 来处理,本篇我我们来分析 Spring MVC 处理客户端请求的流程,也就是工作流程。 Sping MVC 只是储备传送门&#x…

Java整合EasyExcel实战——3(上下列相同合并单元格策略)

参考&#xff1a;https://juejin.cn/post/7322156759443095561?searchId202405262043517631094B7CCB463FDA06https://juejin.cn/post/7322156759443095561?searchId202405262043517631094B7CCB463FDA06 准备条件 依赖 <dependency><groupId>com.alibaba</gr…

邻接矩阵广度优先遍历

关于图的遍历实际上就两种 广度优先和深度优先&#xff0c;一般关于图的遍历都是基于邻接矩阵的&#xff0c;考试这些&#xff0c;用的也是邻接矩阵。 本篇文章先介绍广度优先遍历的原理&#xff0c;和代码实现 什么是图的广度优先遍历&#xff1f; 这其实和二叉树的层序遍…

新人学习笔记之(数组1)

一、数组的概念 1.数组&#xff08;Array&#xff09;可以把一组相关的数据一起存放&#xff0c;并提供方便的访问&#xff08;获取&#xff09;方式 2.数组是指一组数据的集合&#xff0c;其中的每个数据被称作元素&#xff0c;在数组中可以存放任意类型的元素&#xff0c;数组…

数据结构——二叉树的基本应用

在此之前我们已经初步了解了二叉树&#xff0c;在介绍堆的基本应用时&#xff0c;我们已经具体介绍了完全二叉树的基本应用&#xff0c;本章我们介绍二叉树的基本应用&#xff0c;这个不止指的是完全二叉树&#xff0c;而是指泛型的二叉树。 二叉树的基本应用&#xff0c;由于…

代码随想录算法训练营第54天|● 392.判断子序列 ● 115.不同的子序列

392. 判断子序列 这个微软面试的时候考过 双指针就行 编辑距离入门题&#xff1a; 思路是一样的 相同字符1 否则从前面顺下来 class Solution:def isSubsequence(self, s: str, t: str) -> bool:dp[[0]*(len(t)1) for _ in range(len(s)1)]for i in range(1,len(s)1):f…