数据结构(五)

数据结构(五)

  • 常见的排序算法
    • 内部排序
      • 交换
      • 插入
      • 选择
      • 归并
      • 基数
    • 外部排序
      • 基于归并的

常见的排序算法

内部排序

交换

冒泡:每一次运行总会将最小的或者最大的放到前面,如果需要交换,一直在交换
快速排序*:经过一次快排的过程,将待排序元素分成两部分:比基准小的,比基准大的,再分别对这两部分进行快
速排序
在这里插入图片描述

#include <stdio.h>
//快排操作,将数组分成两部分
int Quick_Pass(int arr[], int low, int high)
{int key = arr[low]; //找基准//从上往下依次比较while(low < high){while(low < high && arr[high] > key){//往前走high--;}//把后面遇到的比key小的值放入到前面arr[low] = arr[high];while(low < high && arr[low] <= key){//往后走low++;}//将前面的比key大的值放入盗后面arr[high] = arr[low];}//比较完了,low == high//基准入队arr[low] = key;return low;
}
//快速排序
void Quick_Sort(int arr[], int low, int high)
{if(low >= high) return ;//执行一次快排操作int mid = Quick_Pass(arr, low, high);//左便Quick_Sort(arr, low, mid-1);//右边Quick_Sort(arr, mid+1, high);
}
int main(int argc, const char *argv[])
{int arr[13] = {55, 22, 34, 12, 99, 76, 38, 65, 29, 35, 11, 36, 74};printf("排序前:");for(int i=0; i<13; i++){printf("%d ", arr[i]);}printf("\n");//排序Quick_Sort(arr, 0, 12);printf("排序后:");for(int i=0; i<13; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

插入

直接插入:重构链表
折半插入:原理同排序二叉树的插入,只是对象是一个有序的顺序表
希尔排序:增量,逐渐减少的,直到增量为1为止

在这里插入图片描述

选择

简单选择:每一次运行总会将最小的或者最大的放到前面,如果需要交换,只交换一次
堆(大根堆,小根堆):根结点的值>=左右孩子的值 根节点的值<=左右孩子的值
在Linux下,系统定时器使用小根堆来管理定时器事件。小根堆是一种数据结构,可以快速找到最小值。

归并

在这里插入图片描述

当然可以。下面是一个使用C语言编写的简单归并排序算法示例。归并排序是一种分治算法,它的核心思想是将一个
大问题分解成多个小问题,然后递归地解决这些小问题,最后将结果合并起来。
#include <stdio.h>
void merge(int arr[], int left, int mid, int right) {int n1 = mid - left + 1;int n2 = right - mid;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[left + i];for (int j = 0; j < n2; j++)R[j] = arr[mid + 1 + j];int i = 0;int j = 0;int k = left;while (i < n1 && j < n2) {if (L[i] <= R[j]) {arr[k] = L[i];i++;} else {arr[k] = R[j];j++;}k++;}while (i < n1) {arr[k] = L[i];i++;k++;}while (j < n2) {arr[k] = R[j];j++;k++;}
}
void merge_sort(int arr[], int left, int right) {if (left >= right)return;int mid = left + (right - left) / 2;merge_sort(arr, left, mid);merge_sort(arr, mid + 1, right);merge(arr, left, mid, right);
}

基数

在这里插入图片描述

外部排序

基于归并的

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/16235.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024最新前端面试八股文【基础篇293题】

⼀、HTML、HTTP、web综合问题 1 前端需要注意哪些SEO 2 <img> 的 title 和 alt 有什么区别 3 HTTP的⼏种请求⽅法⽤途 4 从浏览器地址栏输⼊url到显示⻚⾯的步骤 5 如何进⾏⽹站性能优化 6 HTTP状态码及其含义 7 语义化的理解 8 介绍⼀下你对浏览器内核的理解 9 …

【操作系统】发展与分类(手工操作、批处理、分时操作、实时操作)

2.操作系统发展与分类 思维导图 手工操作阶段&#xff08;此阶段无操作系统&#xff09; 需要人工干预 缺点&#xff1a; 1.用户独占全机&#xff0c;资源利用率低&#xff1b; 2.CPU等待手工操作&#xff0c;CPU利用不充分。 批处理阶段&#xff08;操作系统开始出现&#x…

正运动控制器:视觉纠偏和找孔

一、用户主界面CCD参数设置 通过主界面CCD参数设置&#xff0c;学习如何操作计算相机中心与电批中心的偏移量&#xff0c;以及相机标定的功能。 1、相机中心与电批中心的偏移量计算 1.1、在用户主界面点击CCD参数按钮&#xff0c;进入CCD设置界面。 主界面 CCD参数设置界面 1…

制作电子画册速成攻略,快来试试

​当今社会&#xff0c;数字媒体日益普及&#xff0c;电子画册作为一种崭新的展示方式&#xff0c;受到了越来越多人的青睐。它不仅形式新颖&#xff0c;互动性强&#xff0c;而且制作起来也并不复杂。想知道如何快速掌握制作电子画册的技巧吗&#xff1f;我来教你吧。 接下来&…

推荐13款常用的Vscode插件,提高前端日常开发效率

1. Live Server Live Server 插件是一个用于前端开发的扩展&#xff0c;它的主要作用是提供一个本地开发服务器&#xff0c;以便实时预览和调试网页应用程序。其最大特点在于热重载&#xff0c;即开发者可实时预览代码效果。 因为Live Server 允许开发者在浏览器中实时预览您正…

Llama 3没能逼出GPT-5!OpenAI怒“卷”To B战场,新企业级 AI 功能重磅推出!

Meta 是本周当之无愧的AI巨星&#xff01;刚刚推出的 Llama 3 凭借着强大的性能和开源生态的优势在 LLM 排行榜上迅速跃升。 按理说&#xff0c;Llama 3在开源的状态下做到了 GPT-3.7 的水平&#xff0c;必然会显得用户&#xff08;尤其是企业用户&#xff0c;他们更具备独立部…

C#调用HttpClient.SendAsync报错:System.Net.Http.HttpRequestException: 发送请求时出错。

C#调用HttpClient.SendAsync报错&#xff1a;System.Net.Http.HttpRequestException: 发送请求时出错。 var response await client.SendAsync(request, HttpCompletionOption.ResponseHeadersRead, cancellationToken);问题出在SSL/TLS&#xff0c;Windows Server 2012不支持…

Vue3解决“找不到模块“@/components/xxx.vue”或其相应的类型声明”

文章目录 前言背景问题描述解决方案总结 前言 在使用 Vue 3 开发项目时&#xff0c;遇到“找不到模块 ‘/components/xxx.vue’ 或其相应的类型声明”的错误是一个常见问题。这通常与 TypeScript 和模块解析相关的配置不当有关。本文将详细介绍如何解决此问题&#xff0c;确保…

2024-6-遥远的救世主

2024-6-遥远的救世主 2024-4-18 豆豆 fatux&#xff1a; 2021.5.26 看完电视剧《天道》之后购买本书&#xff0c;断断续续一直没有读完。 非常好奇&#xff0c;一个什么样的作者能写出如此奇书。老丁&#xff0c;一个智者&#xff0c;智者是多么孤独&#xff0c;因为找不到同…

信息安全等级保护测评: 登陆日志

文章目录 引言I 登录日志表结构设计II 日志处理2.1 封装日志入库2.2 收集登陆信息2.3 查询接口引言 等保测评是信息安全等级保护测评的简称,是对信息和信息载体按照重要性等级分级别进行检测、评估的过程。 背景:近期AIS监控平台(网页版)等保测评,发现没有登陆日志,现要…

从用法到源码再到应用场景:全方位了解CompletableFuture及其线程池

文章目录 文章导图什么是CompletableFutureCompletableFuture用法总结API总结 为什么使用CompletableFuture场景总结 CompletableFuture默认线程池解析&#xff1a;ForkJoinPool or ThreadPerTaskExecutor&#xff1f;ForkJoinPool 线程池ThreadPerTaskExecutor线程池Completab…

Qt 界面上字体自适应控件大小 - 随控件缩放

Qt 界面上字体自适应控件大小 - 随控件缩放 引言一、设计思路二、进阶版大致思路三、参考链接 引言 Qt控件自适应字体大小可以用adjustSize()函数&#xff0c;但字体自适应控件大小并没有现成的函数可调. - 本文实现了按钮上的字体随按钮大小变化而变化 (如上图所示) - 其他控件…

Spring MVC+mybatis 项目入门:旅游网(三)用户注册——控制反转以及Hibernate Validator数据验证

个人博客&#xff1a;Spring MVCmybatis 项目入门:旅游网&#xff08;三&#xff09;用户注册 | iwtss blog 先看这个&#xff01; 这是18年的文章&#xff0c;回收站里恢复的&#xff0c;现阶段看基本是没有参考意义的&#xff0c;技术老旧脱离时代&#xff08;2024年辣铁铁&…

澳大利亚.德国-门户媒体投放通稿:需要注意什么地方

概述 在现代社会&#xff0c;新闻媒体的投放成为企业和组织宣传推广的重要手段之一。澳大利亚和德国作为全球重要的经济和科技中心&#xff0c;其新闻媒体也备受关注。本文将介绍澳大利亚和德国的一些主要新闻媒体&#xff0c;并讨论发表新闻稿时需要注意的地方。 澳大利亚媒…

streamlit 学习

表情网站 https://getemoji.com/ 官网&#xff1a; https://streamlit.io/ 文档 https://docs.streamlit.io/develop/api-reference/chat/st.chat_message 安装&#xff1a; pip install streamlit启动 以下的python 文件指写streamlit 程序的脚步。 1、先切换目录到Pyth…

VMware虚拟机-设置系统网络IP、快照、克隆

1.设置网络IP 1.点击右上角开关按钮-》有线 已连接-》有线设置 2.手动修改ip 3.重启或者把开关重新关闭开启 2.快照设置 快照介绍&#xff1a; 通过快照可快速保存虚拟机当前的状态&#xff0c;后续可以使用虚拟机还原到某个快照的状态。 1.添加快照(需要先关闭虚拟机) 2.在…

[JAVASE] 类和对象(六) -- 接口(续篇)

目录 一. Comparable接口 与 compareTo方法 1.1 Comparable接口 1.2 compareTo方法的重写 1.2.1 根据年龄进行比较 1.2.2 根据姓名进行比较 1.4 compareTo 方法 的使用 1.3 compareTo方法的缺点(重点) 二. Comparator接口 与 compare方法 2.1 Comparator接口 2.2 compare 方法…

蓝桥杯算法心得——李白打酒(加强版)

大家好&#xff0c;我是晴天学长&#xff0c;记忆化搜索&#xff0c;找到技巧非常重要&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 2) .算法思路 1.memo三维表示记录的结果 3&#xff09;.算法步骤 1…

slint esp32 tokio

源码&#xff1a;https://github.com/xiaguangbo/slint_esp32_tokio cpu 是 esp32c2&#xff0c;屏幕是 ili9341&#xff0c;触摸是 xpt2046&#xff0c;使用 spi 半双工 不使用DMA&#xff08;esp-rs还没支持&#xff09;&#xff0c;SPI 40M&#xff0c;240*320全屏刷新为1.5…

四. TensorRT模型部署优化-模型部署的基础知识

目录 前言0. 简介1. FLOPS2. TOPS3. HPC的排行&#xff0c;CPU/GPU比较4. FLOPs5. FLOPS是如何计算的6. CUDA Core vs Tensor Core总结参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们…