17.分类问题

机器学习分类问题详解与实战

介绍

在机器学习中,分类问题是一类常见的监督学习任务,其目标是根据输入特征将数据样本划分为预先定义的类别之一。分类问题广泛应用于各个领域,如图像识别、自然语言处理、金融风险评估等。本文将详细介绍机器学习分类问题的基本概念、常用算法,并通过Python代码进行实战演练。

分类问题基本概念

在分类问题中,我们通常有一组带有标签的训练数据,每个数据样本都由特征向量和对应的类别标签组成。机器学习算法通过学习训练数据的特征和标签之间的关系,来建立一个分类模型。然后,我们可以使用这个模型对新的、未见过的数据样本进行分类预测。

分类问题的数学表示

  • One-hot 编码:将每个类别映射到一个独立的维度上,并在该维度上使用1来表示该样本属于该类别,其余维度为0。
  • 概率表示:使用每个类别的概率来表示数据属于该类别的可能性。在深度学习中,这种表示方法更为常用,因为它允许模型输出每个类别的置信度。

在分类任务中,常用的模型包括逻辑回归、支持向量机、决策树等。这些模型都可以将输入特征映射到类别标签上,并通过优化目标函数(如交叉熵损失函数)来逼近真实标签。

常用分类算法

  • 逻辑回归(Logistic Regression):一种广义的线性回归模型,用于处理二分类问题。通过逻辑函数(sigmoid函数)将线性回归模型的输出映射到0和1之间,表示样本属于某个类别的概率。
  • 支持向量机(Support Vector Machine, SVM):一种基于统计学习理论的分类方法,通过寻找一个最优的超平面来划分不同类别的数据。对于非线性问题,可以通过核函数将原始数据映射到高维空间,从而使其线性可分。
  • 决策树(Decision Tree):一种树形结构的分类模型,通过一系列的判断条件将样本划分到不同的类别中。决策树模型直观易懂,易于解释,且能够处理离散和连续特征。
  • 随机森林(Random Forest):一种基于决策树的集成学习方法,通过构建多个决策树并将它们的预测结果进行投票来得到最终的分类结果。随机森林具有良好的泛化能力和抗过拟合能力。
  • Softmax回归(多项式逻辑回归):当类别标签多于两个时,我们通常使用Softmax回归(也称为多项式逻辑回归)来处理。Softmax回归可以将模型的输出转换为概率分布,使得所有类别的概率之和等于1。这样做的好处是模型输出更加符合直觉,方便进行决策。在Softmax回归中,我们使用Softmax函数将模型的线性输出转换为概率分布。Softmax函数的形式为:(y_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}})
  • 其中z是模型的线性输出,zi​和zj​分别是z的第i个和第j个元素。Softmax函数将z的每个元素转换为0到1之间的概率值,并且所有概率值之和等于1。

损失函数与优化

当处理分类问题时,特别是多分类问题,我们经常使用交叉熵损失函数(Cross-Entropy Loss)作为损失函数。对于二分类问题,交叉熵损失函数可以简化为对数损失函数(Log Loss)或称为二元交叉熵损失(Binary Cross-Entropy Loss)。

交叉熵损失函数(Cross-Entropy Loss)

对于多分类问题,假设有K个类别,真实标签采用one-hot编码形式,模型输出的概率分布为p(即经过Softmax层后得到的概率分布),则交叉熵损失函数的公式为:

[L = -\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{K}y_j^{(i)}\log(p_j^{(i)})]

其中,

  • (N)是样本的数量。
  • y_j^{(i)}是第(i)个样本对应第(j)个类别的真实概率(采用one-hot编码,因此只有一个值为1,其余为0)。
  • p_j^{(i)}是模型预测的第(i)个样本属于第(j)个类别的概率。
对数损失函数(Log Loss)或二元交叉熵损失(Binary Cross-Entropy Loss)

对于二分类问题,交叉熵损失函数可以简化为:

[L = -\frac{1}{N}\sum_{i=1}^{N}[y^{(i)}\log(p^{(i)}) + (1 - y^{(i)})\log(1 - p^{(i)})]]

其中,

  • (N) 是样本的数量。
  • y^{(i)}是第(i)个样本的真实标签(通常0表示负类,1表示正类)。
  • p^{(i)}是模型预测的第(i)个样本属于正类的概率。

在二分类问题中,通常还会使用Sigmoid函数将模型的输出映射到(0, 1)之间,表示为正类的概率,然后用上述的二元交叉熵损失函数来计算损失。

注意:在实际编程中,为了数值稳定性,通常会使用log(p + eps)log(1 - p + eps)来避免对0或1取对数的情况,其中eps是一个很小的正数(如1e-15)。

实战演练

下面,我们将使用Python的scikit-learn库来实现一个简单的分类任务。我们将使用鸢尾花(Iris)数据集,这是一个经典的分类数据集,包含150个样本,每个样本有四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和一个类别标签(山鸢尾、杂色鸢尾、维吉尼亚鸢尾)。

# 导入必要的库和数据集  
from sklearn.datasets import load_iris  
from sklearn.model_selection import train_test_split  
from sklearn.ensemble import RandomForestClassifier  
from sklearn.metrics import accuracy_score  # 加载鸢尾花数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 创建随机森林分类器实例  
clf = RandomForestClassifier(n_estimators=100, random_state=42)  # 训练模型  
clf.fit(X_train, y_train)  # 使用模型对测试集进行预测  
y_pred = clf.predict(X_test)  # 计算预测准确率  
accuracy = accuracy_score(y_test, y_pred)  
print(f"模型准确率:{accuracy:.2f}")

在随机森林分类器的训练过程中,我们并不直接计算损失函数(如交叉熵损失或对数损失)来优化模型参数,因为随机森林是一种基于集成学习的算法,它通过构建多个决策树并进行投票来得到最终的分类结果。每个决策树在训练过程中会基于某种分裂准则(如基尼不纯度或信息增益)来构建,而不是通过最小化损失函数。

然而,当我们评估随机森林分类器的性能时,我们通常会使用准确率、精确率、召回率、F1分数等指标,或者使用交叉验证来评估模型在未见过的数据上的性能。如果我们想要观察模型在训练过程中的某种“损失”,我们可以计算预测概率和真实标签之间的某种度量,但这并不是随机森林训练过程的一部分。

总结

  • 多分类问题的关键在于将输入数据映射到正确的类别标签上,这通常通过训练一个能够输出类别概率的模型来实现。
  • Softmax 函数在模型输出层使用,用于将模型的原始输出转换为概率分布。
  • 对数损失函数和交叉熵损失函数用于衡量模型预测与真实标签之间的差异,并指导模型参数的优化。

在深度学习中,通过选择合适的模型结构、激活函数和损失函数,可以有效地解决多分类问题。同时,使用优化算法(如梯度下降)来最小化损失函数,从而得到最优的模型参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/16027.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud 项目中使用 Swagger

Spring Cloud 项目中使用 Swagger 关于方案的选择 在 Spring Cloud 项目中使用 Swagger 有以下 4 种方式: 方式一 :在网关处引入 Swagger ,去聚合各个微服务的 Swagger。未来是访问网关的 Swagger 原生界面。 方式二 :在网关处引…

RedHat9 | DNS剖析-配置辅助DNS服务器

一、实验环境 1、辅助域名DNS服务器 DNS通过划分为若干个区域进行管理,每一个区域由1台或多台DNS服务器负责解析,如果仅仅采用1台DNS服务器,在DNS服务器出现故障后,用户将无法完成解析。 辅助DNS服务器的优点 容灾备份&#x…

区间预测 | Matlab实现DNN-KDE深度神经网络结合核密度估计多置信区间多变量回归区间预测

区间预测 | Matlab实现DNN-KDE深度神经网络结合核密度估计多置信区间多变量回归区间预测 目录 区间预测 | Matlab实现DNN-KDE深度神经网络结合核密度估计多置信区间多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现DNN-KDE深度神经网络结合…

MySQL数据处理增删改

数据处理增删改DML 由于约束,以下操作都有可能执行失败(后面讲约束) 插入数据 INSERT 基础添加:VALUES 值的顺序必须和表中字段顺序相同 INSERT INTO class VALUES(1,王小,10); 向指定字段添加: 值的顺序和指定…

MT7628原厂Uboot修改交互串口

工作中,遇到用户用Skylab的SKW92A模组,在参考设计时,将UART接口预留错的情况,对于这种情况,需要将原厂SDK默认的交互串口UART0,改为UART1。在开发过程中,经常需要在Uboot阶段升级固件&#xff0…

【Linux部署】【pig前端部署】Linux安装- docker/docker-compose/nginx (使用docker优雅部署nginx)

🌸🌸 Linux安装- docker/docker-compose/nginx 优雅部署 🌸🌸 一、一键安装jdk yum install -y java-1.8.0-openjdk.x86_64验证 二、安装docker yum list docker-ce --showduplicates | sort -rsudo yum install -y yum-utils …

LabVIEW波纹补偿器无线监测系统

LabVIEW波纹补偿器无线监测系统 在石油化工、冶金及电力等行业中,波纹补偿器作为一种重要的补偿性元件,其安全稳定的运行对管道输送系统的可靠性至关重要。开发了一种基于LabVIEW的波纹补偿器无线监测系统,通过实时监测波纹补偿器的工作状态…

嵌入式单片机寄存器操作与实现方法

大家好,今天给大家分享一下,单片机中寄存器该如何操作与实现。 “芯片里面的寄存器访问方式一般是: 1.可使用地址访问,2.可使用指令访问,3.不可访问” 第一:挂载到内存地址总线上了的 挂载到内存地址总线上了的,可以使用分配到的地址访问 如下是STM32单片机存储器映像…

单条16g和双条8g哪个好

单条16g和双条8g各有优劣,具体选择要根据个人需求和电脑配置来决定。 以下是一些参考信息: •单条16g内存的价格比双条8g内存的价格低,而且16g的内存容量大,一条内存十分的方便。 •两条8g内存可以组成双通道,电脑运行速度要快一些。 •对于普通使用电脑的人群与热衷于…

Sourcetree安装教程及使用

1 Sourcetree介绍 Sourcetree是一款免费的Git图形化客户端,它由Atlassian开发,提供了跨平台的支持,可运行在Windows和Mac操作系统上。Sourcetree可以让开发者更方便地使用Git来管理代码,不需要在命令行中输入复杂的Git命令&#x…

asp.net core接入prometheus2-自定义指标

前提 了解一下asp.net core接入prometheus快速入门 https://blog.csdn.net/qq_36437991/article/details/139064138 新建.net 8空web项目 安装下面三个包 <PackageReference Include"OpenTelemetry.Exporter.Prometheus.AspNetCore" Version"1.8.0-rc.1&…

druid 1.2.14,application.yaml配置文件中,如何进行数据库加密配置

步骤一&#xff1a;先生成加密的密码&#xff1a; 步骤二&#xff1a;配置application.yaml文件&#xff1a; spring:datasource:driver-class-name: com.mysql.cj.jdbc.Drivertype: com.alibaba.druid.pool.DruidDataSourcedruid:username: rootpassword: aPJ35saFz6ASmnmNt…

【汽车操作系统】Autosar和商用OS

目录 什么是AUTOSAR? CP AUTOSAR架构 CAN通信 AP AUTOSAR 背景 CP&AP 开发方面的不同&#xff1a; WRLinux介绍 QNX介绍 什么是AUTOSAR? 随着汽车功能越来越多&#xff0c;导致ECU的数量越来越多。1993年的时候&#xff0c;奥迪A8才只有5个ECU现在典型的现代汽车…

自然资源-各级国土空间总体规划的审查要点及流程总结

自然资源-各级国土空间总体规划的审查要点及流程总结 国土空间规划是对一定区域国土空间开发保护在空间和时间上作出的安排&#xff0c;包括总体规划、详细规划和相关专项规划。 国土空间规划管理是国土空间规划中重要的一环。中共中央、国务院发布《关于建立国土空间规划体系…

LabelMe下载及关键点检测数据标注

本文关键点数据集链接,提取码:x1pk 1.LabelMe下载 这部分内容和YOLOv8_seg的标注软件是一样的,使用anaconda创建虚拟环境安装LabelMe,指令如下: conda create -n labelme python=3.6 -y conda activate labelme conda install pyqt conda install pillow pip install la…

朝天椒USB服务器为何脱颖而出,与其它产品有何不同?

在数字化时代&#xff0c;USB服务器作为解决U盾、加密狗、Ukey等USB设备原创连接、集中管理和共享使用问题的有效工具&#xff0c;越来越受到各行各业的重视。在众多品牌中&#xff0c;朝天椒USB服务器凭借其独特的技术优势和市场定位&#xff0c;成功脱颖而出&#xff0c;成为…

python:__set_name__使用

python&#xff1a;__set_name__使用 1 前言 在Python中&#xff0c;我们可以通过__set_name__方法来实现一些特殊的操作。该方法是在定义类的时候被调用&#xff0c;用于设置属性的名称。这样一来&#xff0c;我们就可以在类定义中动态地获取属性的名称&#xff0c;从而更好…

Pytorch深度学习实践笔记6(b站刘二大人)

&#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;pytorch深度学习 &#x1f380;CSDN主页 发狂的小花 &#x1f304;人生秘诀&#xff1a;学习的本质就是极致重复! 《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibi…

山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(二十)- JUC(6)

目录 wait , notify wait vs sleep 正确使用方法 同步保护性暂停 join的源码 Future 异步生产者/消费者模型 定义 Park & Unpark 原理 wait , notify 小故事小南需要烟才能工作&#xff0c;但它又要占这锁让别人无法进来。那么这个时候开一个waitSet相当于就是休…

一文讲解——Java多态

目录 一、什么是多态&#xff1f;二、转型向上转型向下转型 三、方法覆盖与方法重载四、绑定动态绑定静态绑定 五、理解多态 一、什么是多态&#xff1f; 多态的词组字面意思是&#xff1a; 某种事物多种形态。 但是对于我们学习Java 的程序原来说&#xff0c;就不不能简单这样…