ICML2024 定义新隐私保护升级:DP-BITFIT新型微调技术让AI模型学习更安全

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!

引言:差分隐私在大模型微调中的重要性和挑战

在当今的深度学习领域,大型预训练模型的微调已成为提高各种任务性能的关键技术。然而,当涉及到敏感数据时,如何在保证数据隐私的前提下进行有效的模型微调,成为了一个重大的挑战。差分隐私(Differential Privacy, DP)提供了一种强有力的隐私保护机制,通过在优化过程中添加随机噪声,来保护训练数据的隐私。
在这里插入图片描述

尽管差分隐私技术能够有效地保护用户数据不被泄露,但它也带来了新的挑战,尤其是在大模型的微调过程中。这些挑战主要包括:1) 如何在保持模型性能的同时,实现有效的隐私保护;2) 如何在不显著增加计算和存储开销的情况下,应用差分隐私技术。为了解决这些问题,研究者们提出了多种差分隐私微调方法,如DP-BiTFiT,它通过仅微调模型的偏置项,显著降低了参数的数量,从而减少了计算和存储的需求,同时保持了与全参数微调相当的准确性。

论文标题: Differentially Private Bias-Term only Fine-tuning of Foundation Models

机构: AWS AI, UC Santa Barbara

论文链接: https://arxiv.org/pdf/2210.00036.pdf

项目地址: 未提供

通过这种创新的微调方法,研究者们不仅在理论上提供了差分隐私保护的可能性,也在实际应用中展示了其在处理大规模数据和模型时的高效性和实用性。这为使用敏感数据的深度学习应用提供了新的可能性,使得在保护隐私的同时,也能够利用大数据的优势,推动AI技术的发展。

DP-BiTFiT方法概述

1. 差分隐私的基本概念

差分隐私(Differential Privacy,简称DP)是一种隐私保护技术,它通过在数据发布或查询过程中添加随机噪声,来保护个体数据的隐私。差分隐私的核心思想是,通过算法对数据集进行处理后,即使攻击者拥有除了某个个体之外的所有其他数据,也很难判断该个体是否存在于原始数据集中。

2. BiTFiT方法的基础

BiTFiT是一种参数高效的微调方法,它主要优化模型的偏置项(bias terms),而不是所有参数。这种方法的优势在于,偏置项通常只占模型总参数的很小一部分,因此BiTFiT可以在不牺牲模型性能的情况下,显著减少需要训练的参数数量。

3. DP-BiTFiT的创新点

DP-BiTFiT方法结合了差分隐私和BiTFiT的优势,提出了一种差分隐私偏置项微调方法。这种方法在保持BiTFiT参数效率的同时,引入差分隐私机制,有效保护了训练数据的隐私。DP-BiTFiT不仅保持了模型的高准确率,还显著提高了计算效率,几乎消除了因引入差分隐私而带来的额外计算开销。
在这里插入图片描述

参数效率与计算效率

1. 参数效率的展示

DP-BiTFiT在多个大型模型上的实验表明,该方法只需训练大约0.1%的参数即可达到与全参数微调相当的效果。这种高参数效率使得DP-BiTFiT在处理参数众多的大型模型时具有明显优势,尤其是在分布式学习场景中,可以显著降低通信成本。

在这里插入图片描述

2. 计算效率的对比分析

与传统的全参数微调方法相比,DP-BiTFiT在时间和空间复杂度上都有显著优势。实验结果显示,DP-BiTFiT在执行时间上比差分隐私全参数微调快2到30倍,内存使用量也减少了2到8倍。这种高效的计算性能使得DP-BiTFiT能够有效地应用于长序列文本和高分辨率图像等计算密集型任务,这些任务在使用传统差分隐私微调方法时往往难以处理。

在这里插入图片描述

实验设置与数据集介绍

1. 文本分类任务

在文本分类任务中,我们使用了四个数据集:MNLI(m),即多类型自然语言推理语料库的匹配分割;QQP,即Quora问题对数据集;QNLI,即斯坦福问答数据集;SST2,即斯坦福情感树库数据集。这些数据集被用于评估不同的文本分类算法的性能。

2. 图像分类任务

对于图像分类任务,我们使用了CIFAR10和CIFAR100数据集,以及CelebA数据集。这些数据集分别包含了不同类型和数量的图像,用于测试不同图像分类方法的效果。我们在这些数据集上进行了多轮实验,以评估不同的训练方法在处理图像数据时的性能和效率。

在这里插入图片描述

实验结果与分析

1. 文本分类的准确性结果

在文本分类任务中,DP-BiTFiT在RoBERTa模型上的测试准确率表现优异。例如,在SST2数据集上,RoBERTa-base模型在不同的隐私保护级别下,准确率均能达到90%以上,显示出DP-BiTFiT方法在保持数据隐私的同时,仍能保持较高的分类准确性。

在这里插入图片描述

2. 图像分类的准确性结果

在图像分类任务中,DP-BiTFiT同样表现出良好的准确性。例如,在CIFAR100数据集上,通过预训练和细调,准确率可以达到88.7%,这显示了DP-BiTFiT在处理高维图像数据时的有效性。

3. 计算效率和内存使用的对比

DP-BiTFiT在计算效率和内存使用上具有显著优势。例如,在处理长序列文本和高分辨率图像任务时,DP-BiTFiT比DP全参数微调快2到30倍,且使用的内存少2到8倍。这一优势使得DP-BiTFiT在需要处理大规模数据和复杂模型时,成为一个非常有吸引力的选择。

在这里插入图片描述

讨论与未来方向

1. DP-BiTFiT的优势总结

DP-BiTFiT作为一种差分隐私偏置项微调方法,展现出了显著的优势。首先,它是模型无关的,能够在不修改网络架构的情况下,通过仅训练约0.1%的参数,达到与全参数微调相媲美的精度。其次,DP-BiTFiT在计算效率上具有明显优势,几乎消除了差分隐私带来的时间和空间复杂性增加。在多种任务中,DP-BiTFiT的速度比全参数微调快2到30倍,内存使用量减少2到8倍,甚至超过了标准的全参数微调。这种高效性使得DP-BiTFiT能够有效处理长序列文本和高分辨率图像等计算密集型任务。

2. 未来研究方向的展望

未来的研究可以在几个方向上进一步扩展DP-BiTFiT的应用和优化。首先,考虑将DP-BiTFiT与其他参数高效的微调方法如前缀调整或权重调整结合,形成新的混合微调策略,以适应不同层次的需求和优化目标。其次,可以探索在更广泛的模型和任务中应用DP-BiTFiT,特别是在小模型或复杂任务中,通过层次化的微调策略来优化性能。此外,进一步减少计算和内存开销,提高模型在实际部署中的可用性和效率,也是未来研究的重要方向。

在这里插入图片描述

总结:回顾DP-BiTFiT的主要贡献及其在实际应用中的潜力

DP-BiTFiT作为一种创新的差分隐私偏置项微调方法,其主要贡献在于实现了高精度、高参数效率和高计算效率的隐私保护模型训练。通过仅训练模型的0.1%参数,DP-BiTFiT不仅保持了与全参数微调相当的精度,还显著降低了计算和内存需求,使得在资源受限的环境中也能高效运行。这些优势使得DP-BiTFiT在处理敏感数据时,特别是在需要处理大规模数据集或高维数据时,展现出巨大的应用潜力。未来,通过进一步的优化和扩展,DP-BiTFiT有望在更多的隐私敏感领域发挥重要作用,为保护个人隐私提供更强大的技术支持。

关注DeepVisionary 了解更多深度学习前沿科技信息&顶会论文分享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/15691.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推特热帖:大语言模型自荐能够替代的20种人类工作!快来看你是否需要转行!

最近推特上有一个例子引起了广泛的讨论,事情的起因是这样的:网友让 GPT-4o 预测一下自己未来将会替代人类哪些工作? 这听起来很有趣!GPT-4o会给出什么样的预测呢? 3.5研究测试:hujiaoai.cn 4研究测试&…

02-Linux【基础篇】

一、Linux的目录结构 1.基本介绍 Linux的文件系统采用层级式的树状目录结构,在此结构中的最上层是根目录"/",然后在此目录下再创建其他的目录 深刻理解Linux树状文件目录是非常重要的 记住一句经典的话:在Linux世界里&#xff…

如何在 DigitalOcean Droplet 云主机上创建 Ubuntu 服务器

在本文中,你将通过 DigitalOcean 的管理面板创建一个 Ubuntu 服务器,并将其配置为使用你的 SSH 密钥。设置好服务器后,你可以在其上部署应用程序和网站。 本教程是DigitalOcean云课程简介的一部分,它指导用户完成将应用程序安全地…

win10右键没有默认打开方式的选项的处理方法

问题描述 搞了几个PDF书籍学习一下,不过我不想用默认的WPS打开,因为WPS太恶心人了,占用资源又高。我下载了个Sumatra PDF,这时候我像更改pdf文件默认的打开程序,发现右击没有这个选项。 问题解决 右击文件–属性–…

汽车以太网发展现状及挑战

一、汽车以太网技术联盟 目前推动汽车以太网技术应用与发展的组织包括:OPEN Alliance(One-Pair Ether-Net Alliance SIG)联盟,主要致力于汽车以太网推广与使用,该联盟通过推进 BroadR- Reach 单对非屏蔽双绞线以太网传…

设计新境界:大数据赋能UI的创新美学

设计新境界:大数据赋能UI的创新美学 引言 随着大数据技术的蓬勃发展,它已成为推动UI设计创新的重要力量。大数据不仅为界面设计提供了丰富的数据资源,还赋予了设计师以全新的视角和工具来探索美学的新境界。本文将探讨大数据如何赋能UI设计…

面试八股之JVM篇3.5——垃圾回收——G1垃圾回收器

🌈hello,你好鸭,我是Ethan,一名不断学习的码农,很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 🏃人生之义,在于追求,不在成败,勤通…

1688. 比赛中的配对次数

题目: 给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制: 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。 如果当前队伍数为 奇数 …

python梯度下降法求解三元线性回归系数,并绘制结果

import numpy as np import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(0) X1 2 * np.random.rand(100, 1) X2 3 * np.random.rand(100, 1) X3 4 * np.random.rand(100, 1) y 4 3 * X1 5 * X2 2 * X3 np.random.randn(100, 1) # 合并特征 X_b np.hsta…

Vue中组件之间的通信有哪些方法

在Vue中,组件之间的通信有多种方法,以下是一些常见的方法: Props和$emit: 父组件通过props向子组件传递数据。子组件通过$emit触发事件,将数据传递给父组件。 provide和inject: 在Vue 2.2.0版本中引入的选…

云计算-特殊机制(Specialsed Mechanisms)

自动扩展监听器 (Automated Scaling Listener) 自动扩展监听器是一种特定类型的服务代理。它运行在云提供商的网络中,监控云消费者和云服务之间的网络流量。通过分析消费者和服务之间的消息量和类型,它可以测量云服务的负载。 自动扩展监听器对变化的负载…

常见 JVM 面试题补充

原文地址 : 26 福利:常见 JVM 面试题补充 (lianglianglee.com) CMS 是老年代垃圾回收器? 初步印象是,但实际上不是。根据 CMS 的各个收集过程,它其实是一个涉及年轻代和老年代的综合性垃圾回收器。在很多文章和书籍的划分中&…

SpringCloud Alibaba的相关组件的简介及其使用

Spring Cloud Alibaba是阿里巴巴为开发者提供的一套微服务解决方案,它基于Spring Cloud项目,提供了一系列功能强大的组件,包括服务注册与发现、配置中心、熔断与限流、消息队列等。 本文将对Spring Cloud Alibaba的相关组件进行简介&#xff…

React Native 之 动画Animated(十二)

react-native 的 Animated API提供了一种声明式的方式来创建平滑的动画效果。它允许你编写动画逻辑,并将动画值直接绑定到组件的样式或布局属性上。 react-native 的 Animated 库通过以下方式工作: 创建动画值:首先,你需要使用 A…

ROCm上运行预训练BERT

14.10. 预训练BERT — 动手学深度学习 2.0.0 documentation (d2l.ai) 下载数据集 在d2l-zh/pytorch/data目录解压: ~/d2l-zh/pytorch/data$ unzip wikitext-2-v1.zip Archive: wikitext-2-v1.zipcreating: wikitext-2/inflating: wikitext-2/wiki.test.tokens …

【第17章】MyBatis-Spring之注入映射器

文章目录 前言一、注册映射器1. XML 配置2. Java 配置 二、发现映射器1. <mybatis:scan/>2.MapperScan ( 建议 ) \color{#00FF00}{(建议)} (建议) 三、MapperScannerConfigurer总结 前言 与其在数据访问对象&#xff08;DAO&#xff09;中手工编写使用 SqlSessionDaoSu…

数据库--数据库基础(一)

目录 第一章 绪论 一.数据库的基本概念 1. 数据库的4个基本概念 2、数据库系统的特点 二.数据库和文件 三.数据模型 1.概念模型 2.逻辑模型(物理模型) 2.1关系模型 四.数据库系统的三级模式结构&#xff1a; 五数据库的二级映像功能与数据独立性 第二章 关系数据库…

WEBPACK开发|生产环境配置(抽离公共部分)

这是webpack4演示&#xff0c;webpack5有些插件不在推荐&#xff0c; 1. webpack.base.config.js文件的配置说明 const path require(path); const webpack require(webpack); const ExtractTextPlugin require(extract-text-webpack-plugin); // 该插件的主要是为了抽离c…

【LeetCode面试经典150题】100. 相同的树

一、题目 100. 相同的树 - 力扣&#xff08;LeetCode&#xff09; 给你两棵二叉树的根节点 p 和 q &#xff0c;编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同&#xff0c;并且节点具有相同的值&#xff0c;则认为它们是相同的。 二、思路 二叉树的题&#…

C++的lambda函数、bind函数、类函数绑定参数,学习测试用例

在C中&#xff0c;Lambda函数、std::bind 和类函数绑定参数提供了灵活的方式来处理函数调用。 Lambda函数是一种匿名函数&#xff0c;可以捕获外部变量并在函数体内使用。它们提供了简洁而强大的方式来定义内联函数。std::bind 用于创建一个新的函数对象&#xff0c;其中部分参…