3D 生成重建014-Bidiff使用二维和三维先验的双向扩散

3D 生成重建014-Bidiff使用二维和三维先验的双向扩散


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 效果

0 论文工作

大多数三维生成研究集中在将二维基础模型向上投影到三维空间中,要么通过最小化二维评分蒸馏采样(SDS)损失,要么通过对多视图数据集进行微调。由于缺乏显式的三维先验,这些方法经常导致几何异常和多视图不一致。近来研究人员试图通过直接在三维数据集上进行训练来改善三维物体的质量,其代价是生成的纹理质量较低,因为三维数据集中有限的纹理多样性。为了利用这两种方法的优势,作者提出了双向扩散(BiDiff),这是一个同时包含3D和2D的统一框架扩散过程中,二者分别服务于三维保真度和二维纹理丰富度。此外,由于一个简单的组合可能会产生不一致的生成结果,论文用bidiff把他们连接起来。
这篇论文旨在解决当前文本到三维生成方法的局限性,特别是几何异常和多视角不一致的问题,并提出一种名为 BiDiff (Bidirectional Diffusion) 的新方法,以生成高质量、细节丰富且三维一致的模型。
其实这个地方已经可以看到SyncDreamer和SyncMVD的味道了

1 论文方法

BiDiff 的核心思想是将预训练的二维和三维扩散模型结合起来,并利用双向引导机制来同步两个扩散过程,从而学习一个联合的二维和三维先验。
在这里插入图片描述
1方法概述:
混合表示: 使用 SDF (Signed Distance Field) 表示三维特征,使用多视角图像表示二维特征。
双向扩散: 分别训练一个三维扩散模型和一个二维扩散模型,并通过双向引导机制进行联合微调。
二维引导三维: 将二维扩散模型去噪后的多视角图像投影到三维空间,引导三维扩散模型的去噪过程。
三维引导二维: 将三维扩散模型去噪后的 SDF 渲染成多视角图像,引导二维扩散模型的去噪过程。
2. 优势:
高质量纹理: 利用预训练的二维扩散模型,BiDiff 可以生成比仅使用三维数据集训练的模型更丰富的纹理细节。
三维一致性: 通过双向引导机制,BiDiff 确保了生成的三维模型在不同视角下的一致性。
可控性: BiDiff 可以分别控制纹理和几何形状的生成,例如,在保持形状不变的情况下改变纹理,或在保持纹理风格不变的情况下改变形状。
高效性: 相比于基于优化的文本到三维生成方法,BiDiff 的生成速度更快。
3. 其他特点:
利用三维先验: BiDiff 使用 Shap-E 作为三维先验,并引入噪声以避免过度依赖先验模型。
与优化方法结合: BiDiff 的输出可以作为优化方法的初始化,进一步提升模型质量和效率。
4. 额外的分析:
创新性: BiDiff 的创新性主要体现在双向引导机制,它有效地将二维和三维扩散过程结合起来,并利用两个先验模型的优势。
局限性: 论文中没有与其他最新的文本到三维生成方法进行详细的比较,例如DreamFusion, ProlificDreamer等。
未来方向: 可以探索更强大的二维和三维扩散模型,以及更有效的引导机制,进一步提升生成质量和效率。

2 效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/15419.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据结构] -- 双向循环链表

🌈 个人主页:白子寰 🔥 分类专栏:C打怪之路,python从入门到精通,数据结构,C语言,C语言题集👈 希望得到您的订阅和支持~ 💡 坚持创作博文(平均质量分82)&#…

从反向传播(BP)到BPTT:详细数学推导【原理理解】

从反向传播到BPTT:详细推导与问题解析 在本文中,我们将从反向传播算法开始,详细推导出反向传播通过时间(Backpropagation Through Time, BPTT)算法。重点讨论BPTT中的梯度消失和梯度爆炸问题,并解释如何解…

采用LoRA方法微调llama3大语言模型

文章目录 前言一、Llama3模型简介1.下载llama3源码到linux服务器2.安装依赖3.测试预训练模型Meta-Llama-3-8B4.测试指令微调模型Meta-Llama3-8B-Instruct5.小结 二、LoRA微调Llama31.引入库2.编写配置文件3.LoRA训练的产物 三、测试新模型效果1.编写配置文件2.运行配置文件&…

QT教程-一,初识QT

目录 一,QT是什么?能够使用它做什么? 二,Qt 能够使用的语言 三,Qt主要用于什么领域? 四,Qt开发的软件 一,QT是什么?能够使用它做什么? Qt是一个跨平台的 C 开发库,主…

全球最高点赞记录,世界点赞第一名是谁?世界点赞第一人名字的由来

世界点赞第一人名字的由来: 起源与概念提出: 二十一世纪东方伟大的思想家哲学家教育家颜廷利教授,一位在中国21世纪早期便以其非凡才华和创新精神著称的学者,早在互联网尚未普及的20世纪90年代,就已经提出了“点赞”的…

python爬虫登录到海康相机管理页面

简述 1.最近接到个任务是在管理页面更改相机的某个参数,下载官方的sdk貌似没有提供这个接口,所以只能自己写爬虫登录发请求了。 1.主要步骤 1.1 发送get请求获取到salt,sessionID,challenge等信息 http://admin:123456192.168.…

交叉熵损失函数计算过程(tensorflow)

交叉熵损失函数通常用于多类分类损失函数计算。计算公式如下: P为真实值,Q为预测值。 使用tensorflow计算 import tensorflow as tf import keras# 创建一个示例数据集 # 假设有3个样本,每个样本有4个特征,共2个类别 # 目标标签…

2024最新私有化部署AI大模型,让每个人都有属于自己的AI助理

让每个人都拥有一个属于自己的本地大模型 下载Ollama 下载地址 ​ https://ollama.com/download ​ Ollama支持MacOS、Linux、Windows 解压 下载完成后,会得到一个Ollama-darwin.zip文件,解压后,以Mac为例是一个可运行文件:O…

AI应用案例:服务器智能分析管理系统

服务器硬件配置、性能状态、所运行的应用系统等信息分散于多个不同的信息管理系统。人为查询判断现有的服务器资源是否满足用户需求,且需结合资产管理系统与Maximo基础资源、性能监控、运维管理等各个系统互不关联,数据分散不能为运维管理提供完整一致的…

在Spring 当中存在的八大模式

在Spring 当中存在的八大模式 文章目录 在Spring 当中存在的八大模式每博一文案1. 简单工厂模式2. 工厂方法模式3. 单例模式4. 代理模式5. 装饰器模式6. 观察者模式7. 策略模式8. 模板方法模式最后: 每博一文案 我认为 “知世故而不世故” 才是真正意义上的成熟。回…

【PPT密码】PPT文件的两种不可编辑情况

不知道大家有没有遇到过,PPT文件无法编辑的情况,今天小编分享两种ppt文件不可编辑的原因以及解决方法。 情况一 如果打开ppt文件之后,发现幻灯片某些地方或者每张幻灯片同一个地方,无法编辑,这可能是因为PPT中设置了…

ISCC 2024 部分wp

文章目录 一、Misc1、Number_is_the_key2、FunZip3、擂台—— 重“隐”;4、RSA_KU5、时间刺客6、成语学习7、 精装四合一8、钢铁侠在解密9、有人让我给你带个话10、Magic_Keyboard11、工业互联网模拟仿真数据分析 二、Web1、还没想好名字的塔防游戏2、代码审计3、原…

Python数据分析实验四:数据分析综合应用开发

目录 一、实验目的与要求二、主要实验过程1、加载数据集2、数据预处理3、划分数据集4、创建模型估计器5、模型拟合6、模型性能评估 三、主要程序清单和运行结果四、实验体会 一、实验目的与要求 1、目的: 综合运用所学知识,选取有实际背景的应用问题进行…

【Python】【Scrapy 爬虫】理解HTML和XPath

为了从网页中抽取信息,必须对其结构有更多了解。我们快速浏览HTML、HTML的树状表示,以及在网页上选取信息的一种方式XPath。 HTML、DOM树表示以及XPath 互联网是如何工作的? 当两台电脑需要通信的时候,你必须要连接他们&#xff…

Android Studio实现MQTT协议的连接

1添加依赖 在项目中找到下图文件 打开文件 如下 plugins {alias(libs.plugins.android.application) }android {namespace "com.example.mqtt_04"compileSdk 34defaultConfig {applicationId "com.example.mqtt_04"minSdk 27targetSdk 34versionCo…

小红书无限加群脚本无需ROOT【使用简单无教程】

小红书无限加群脚本无需ROOT,包含了对应的小红书版本【使用简单无教程】 链接:https://pan.baidu.com/s/1HkLhahmHDFMKvqCC3Q3haA?pwd6hzf 提取码:6hzf

【Vue】computed 和 methods 的区别

概述 在使用时,computed 当做属性使用,而 methods 则当做方法调用computed 可以具有 getter 和 setter,因此可以赋值,而 methods 不行computed 无法接收多个参数,而 methods 可以computed 具有缓存,而 met…

Python函数、类和方法

大家好,当涉及到编写可维护、可扩展且易于测试的代码时,Python提供了一些强大的工具和概念,其中包括函数、类和方法。这些是Python编程中的核心要素,可以帮助我们构建高效的测试框架和可靠的测试用例。 本文将探讨Python中的函数、…

大语言模型的工程技巧(三)——分布式计算

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 本文将讨论如何利用多台机器进行神经网络的分布式训练。利用多台机器来加速大语言模型的训练,是其获得成功的重要原…

BUUCTF靶场[Web] [极客大挑战 2019]Havefun1、[HCTF 2018]WarmUp1、[ACTF2020 新生赛]Include

[web][极客大挑战 2019]Havefun1 考点:前端、GET传参 点开网址,发现是这个界面 点击界面没有回显,老规矩查看源代码,看到以下代码 代码主要意思为: 用get传参,将所传的参数给cat,如果catdog…