Python数据分析实验四:数据分析综合应用开发

目录

    • 一、实验目的与要求
    • 二、主要实验过程
      • 1、加载数据集
      • 2、数据预处理
      • 3、划分数据集
      • 4、创建模型估计器
      • 5、模型拟合
      • 6、模型性能评估
    • 三、主要程序清单和运行结果
    • 四、实验体会


一、实验目的与要求

1、目的:

  综合运用所学知识,选取有实际背景的应用问题进行数据分析方案的设计与实现。要求明确目标和应用需求,涵盖数据预处理、建模分析、模型评价和结果展示等处理阶段,完成整个分析流程。

2、要求:

(1)应用Scikit-Learn库中的逻辑回归、SVM和kNN算法对Scikit-Learn自带的乳腺癌(from sklearn.datasets import load_breast_cancer)数据集进行分类,并分别评估每种算法的分类性能。
(2)为了进一步提升算法的分类性能,能否尝试使用网格搜索和交叉验证找出每种算法较优的超参数。

二、主要实验过程

1、加载数据集

from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()
cancer.keys()
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])

将数据集转换为DataFram:

import pandas as pd
cancer_data=pd.DataFrame(cancer.data,columns=cancer.feature_names)
cancer_data['target']=cancer.target_names[cancer.target]
cancer_data.head(3).append(cancer_data.tail(3))
mean radiusmean texturemean perimetermean areamean smoothnessmean compactnessmean concavitymean concave pointsmean symmetrymean fractal dimension...worst textureworst perimeterworst areaworst smoothnessworst compactnessworst concavityworst concave pointsworst symmetryworst fractal dimensiontarget
017.9910.38122.801001.00.118400.277600.300100.147100.24190.07871...17.33184.602019.00.162200.665600.71190.26540.46010.11890malignant
120.5717.77132.901326.00.084740.078640.086900.070170.18120.05667...23.41158.801956.00.123800.186600.24160.18600.27500.08902malignant
219.6921.25130.001203.00.109600.159900.197400.127900.20690.05999...25.53152.501709.00.144400.424500.45040.24300.36130.08758malignant
56616.6028.08108.30858.10.084550.102300.092510.053020.15900.05648...34.12126.701124.00.113900.309400.34030.14180.22180.07820malignant
56720.6029.33140.101265.00.117800.277000.351400.152000.23970.07016...39.42184.601821.00.165000.868100.93870.26500.40870.12400malignant
5687.7624.5447.92181.00.052630.043620.000000.000000.15870.05884...30.3759.16268.60.089960.064440.00000.00000.28710.07039benign

6 rows × 31 columns

2、数据预处理

进行数据标准化:

from sklearn.preprocessing import StandardScaler
X=StandardScaler().fit_transform(cancer.data)
y=cancer.target

3、划分数据集

将数据集划分为训练集和测试集:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33) 

4、创建模型估计器

(1)创建逻辑回归模型估计器:

#创建逻辑回归模型估计器
from sklearn.linear_model import LogisticRegression
lgr=LogisticRegression()

(2)创建SVM算法模型估计器:

#创建SVM算法模型估计器
from sklearn.svm import SVC
svc=SVC()

(3)创建kNN算法模型估计器:

#创建kNN算法模型估计器
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()

5、模型拟合

用训练集训练模型估计器estimator:

#训练逻辑回归模型估计器
lgr.fit(X_train,y_train)
#训练SVM算法模型估计器
svc.fit(X_train,y_train)
#训练kNN算法模型估计器
knn.fit(X_train,y_train)

6、模型性能评估

(1)逻辑回归模型性能评估:

#用模型估计器对测试集数据做预测
y_pred=lgr.predict(X_test)#对模型估计器的学习效果进行评价
print("测试集的分类准确率为:",lgr.score(X_test,y_test))

(2)SVM算法模型性能评估:

#用模型估计器对测试集数据做预测
y_pred=svc.predict(X_test)#对模型估计器的学习效果进行评价
print("测试集的分类准确率为:",svc.score(X_test,y_test))

(3)kNN算法模型性能评估:

#用模型估计器对测试集数据做预测
y_pred=knn.predict(X_test)#对模型估计器的学习效果进行评价
print("测试集的分类准确率为:",knn.score(X_test,y_test))

三、主要程序清单和运行结果

1、逻辑回归用于分类

#加载数据集
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()#对数据集进行预处理,实现数据标准化
from sklearn.preprocessing import StandardScaler
X=StandardScaler().fit_transform(cancer.data)
y=cancer.target#将数据集划分为训练集和测试集(要求测试集占25%,随机状态random state设置为33)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33) #创建模型估计器estimator
from sklearn.linear_model import LogisticRegression
lgr=LogisticRegression()#用训练集训练模型估计器estimator
lgr.fit(X_train,y_train)#用模型估计器对测试集数据做预测
y_pred=lgr.predict(X_test)#对模型估计器的学习效果进行评价
#最简单的评估方法:就是调用估计器的score(),该方法的两个参数要求是测试集的特征矩阵和标签向量
print("测试集的分类准确率为:",lgr.score(X_test,y_test))
from sklearn import metrics
#对于多分类问题,还可以使用metrics子包中的classification_report
print(metrics.classification_report(y_test,y_pred,target_names=cancer.target_names)) #网格搜索与交叉验证相结合的逻辑回归算法分类:
from sklearn.model_selection import GridSearchCV,KFold
params_lgr={'C':[0.01,0.1,1,10,100],'max_iter':[100,200,300],'solver':['liblinear','lbfgs']}
kf=KFold(n_splits=5,shuffle=False)grid_search_lgr=GridSearchCV(lgr,params_lgr,cv=kf)
grid_search_lgr.fit(X_train,y_train)
grid_search_y_pred=grid_search_lgr.predict(X_test)
print("Accuracy:",grid_search_lgr.score(X_test,y_test))
print("best params:",grid_search_lgr.best_params_)

在这里插入图片描述

2、支持向量用于分类

#加载数据集
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()#对数据集进行预处理,实现数据标准化
from sklearn.preprocessing import StandardScaler
X=StandardScaler().fit_transform(cancer.data)
y=cancer.target#将数据集划分为训练集和测试集(要求测试集占25%,随机状态random state设置为33)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33) #创建模型估计器estimator
from sklearn.svm import SVC
svc=SVC()#用训练集训练模型估计器estimator
svc.fit(X_train,y_train)#用模型估计器对测试集数据做预测
y_pred=svc.predict(X_test)#对模型估计器的学习效果进行评价
#最简单的评估方法:就是调用估计器的score(),该方法的两个参数要求是测试集的特征矩阵和标签向量
print("测试集的分类准确率为:",svc.score(X_test,y_test))
from sklearn import metrics
#对于多分类问题,还可以使用metrics子包中的classification_report
print(metrics.classification_report(y_test,y_pred,target_names=cancer.target_names))#网格搜索与交叉验证相结合的SVM算法分类:
from sklearn.model_selection import GridSearchCV,KFold
params_svc={'C':[0.1,1,10],'gamma':[0.1,1,10],'kernel':['linear','rbf']}
kf=KFold(n_splits=5,shuffle=False)
grid_search_svc=GridSearchCV(svc,params_svc,cv=kf)
grid_search_svc.fit(X_train,y_train)
grid_search_y_pred=grid_search_svc.predict(X_test)
print("Accuracy:",grid_search_svc.score(X_test,y_test))
print("best params:",grid_search_svc.best_params_)

在这里插入图片描述

3、kNN用于分类

#加载数据集
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()#对数据集进行预处理,实现数据标准化
from sklearn.preprocessing import StandardScaler
X=StandardScaler().fit_transform(cancer.data)
y=cancer.target#将数据集划分为训练集和测试集(要求测试集占25%,随机状态random state设置为33)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33) #创建模型估计器estimator
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()#用训练集训练模型估计器estimator
knn.fit(X_train,y_train)#用模型估计器对测试集数据做预测
y_pred=knn.predict(X_test)#对模型估计器的学习效果进行评价
#最简单的评估方法:就是调用估计器的score(),该方法的两个参数要求是测试集的特征矩阵和标签向量
print("测试集的分类准确率为:",knn.score(X_test,y_test))
from sklearn import metrics
#对于多分类问题,还可以使用metrics子包中的classification_report
print(metrics.classification_report(y_test,y_pred,target_names=cancer.target_names))#网格搜索与交叉验证相结合的kNN算法分类:
from sklearn.model_selection import GridSearchCV,KFold
params_knn={'algorithm':['auto','ball_tree','kd_tree','brute'],'n_neighbors':range(3,10,1),'weights':['uniform','distance']}
kf=KFold(n_splits=5,shuffle=False)
grid_search_knn=GridSearchCV(knn,params_knn,cv=kf)
grid_search_knn.fit(X_train,y_train)
grid_search_y_pred=grid_search_knn.predict(X_test)
print("Accuracy:",grid_search_knn.score(X_test,y_test))
print("best params:",grid_search_knn.best_params_)

在这里插入图片描述

四、实验体会

  在本次实验中,我使用了Scikit-Learn库中的逻辑回归、支持向量机(SVM)和k最近邻(kNN)算法对乳腺癌数据集进行分类,并对每种算法的分类性能进行了评估。随后,我尝试使用网格搜索和交叉验证来找出每种算法的较优超参数,以进一步提升其分类性能。
  首先,我加载了乳腺癌数据集,并将其划分为训练集和测试集。然后,我分别使用逻辑回归、SVM和kNN算法进行训练,并在测试集上进行评估。评估指标包括准确率、精确率、召回率和F1-score等。通过这些指标,我能够了解每种算法在乳腺癌数据集上的分类性能。
  接着,我尝试使用网格搜索(Grid Search)和交叉验证(Cross Validation)来找出每种算法的较优超参数。网格搜索是一种通过在指定的超参数空间中搜索最佳参数组合来优化模型的方法。而交叉验证则是一种评估模型性能和泛化能力的方法,它将数据集分成多个子集,在每个子集上轮流进行训练和测试,从而得到更稳健的性能评估结果。
  在进行网格搜索和交叉验证时,我根据每种算法的参数范围设置了不同的参数组合,并使用交叉验证来评估每种参数组合的性能。最终,我选择了在交叉验证中性能最优的参数组合作为最终的超参数,并将其用于重新训练模型。
  通过这次实验,我学到了如何使用Scikit-Learn库中的机器学习算法进行分类任务,并了解了如何通过网格搜索和交叉验证来优化算法的超参数,提升其分类性能。同时,我也意识到了在实际应用中,选择合适的算法和调优超参数对于获得良好的分类效果至关重要。这次实验为我提供了宝贵的实践经验,对我的机器学习学习之旅有着重要的意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/15389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】【Scrapy 爬虫】理解HTML和XPath

为了从网页中抽取信息,必须对其结构有更多了解。我们快速浏览HTML、HTML的树状表示,以及在网页上选取信息的一种方式XPath。 HTML、DOM树表示以及XPath 互联网是如何工作的? 当两台电脑需要通信的时候,你必须要连接他们&#xff…

Android Studio实现MQTT协议的连接

1添加依赖 在项目中找到下图文件 打开文件 如下 plugins {alias(libs.plugins.android.application) }android {namespace "com.example.mqtt_04"compileSdk 34defaultConfig {applicationId "com.example.mqtt_04"minSdk 27targetSdk 34versionCo…

小红书无限加群脚本无需ROOT【使用简单无教程】

小红书无限加群脚本无需ROOT,包含了对应的小红书版本【使用简单无教程】 链接:https://pan.baidu.com/s/1HkLhahmHDFMKvqCC3Q3haA?pwd6hzf 提取码:6hzf

【Vue】computed 和 methods 的区别

概述 在使用时,computed 当做属性使用,而 methods 则当做方法调用computed 可以具有 getter 和 setter,因此可以赋值,而 methods 不行computed 无法接收多个参数,而 methods 可以computed 具有缓存,而 met…

Python函数、类和方法

大家好,当涉及到编写可维护、可扩展且易于测试的代码时,Python提供了一些强大的工具和概念,其中包括函数、类和方法。这些是Python编程中的核心要素,可以帮助我们构建高效的测试框架和可靠的测试用例。 本文将探讨Python中的函数、…

大语言模型的工程技巧(三)——分布式计算

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 本文将讨论如何利用多台机器进行神经网络的分布式训练。利用多台机器来加速大语言模型的训练,是其获得成功的重要原…

BUUCTF靶场[Web] [极客大挑战 2019]Havefun1、[HCTF 2018]WarmUp1、[ACTF2020 新生赛]Include

[web][极客大挑战 2019]Havefun1 考点:前端、GET传参 点开网址,发现是这个界面 点击界面没有回显,老规矩查看源代码,看到以下代码 代码主要意思为: 用get传参,将所传的参数给cat,如果catdog…

Linux基础(五):常用基本命令

从本节开始,我们正式进入Linux的学习,通过前面的了解,我们知道我们要以命令的形式使用操作系统(使用操作系统提供的各类命令,以获得字符反馈的形式去使用操作系统。),因此,我们是很有…

【全开源】点餐小程序系统源码(ThinkPHP+FastAdmin+UniApp)

基于ThinkPHPFastAdminUniApp开发的点餐微信小程序,类似肯德基,麦当劳,喜茶等小程序多店铺模式,支持子商户模式,提供全部前后台无加密源代码和数据库,支持私有化部署。 革新餐饮行业的智慧点餐解决方案 一…

【vue-6】监听

一、监听watch 完整示例代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Documen…

【MATLAB源码-第213期】基于matlab的16QAM调制解调系统软硬判决对比仿真,输出误码率曲线对比图。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 一、16QAM调制原理 在16QAM&#xff08;16 Quadrature Amplitude Modulation&#xff09;调制中&#xff0c;一个符号表示4个比特的数据。这种调制方式结合了幅度调制和相位调制&#xff0c;能够在相同的频谱资源下传输更多…

EEGLAB的相关使用

目录 概念 1.安装EEGLAB 2.文件实例演示 导入数据集处理 &#xff08;1&#xff09;导入数据集 &#xff08;2&#xff09;画图 &#xff08;3&#xff09; 修改并存储数据集 &#xff08;4&#xff09; 保存数据集 &#xff08;5&#xff09; 删除数据集 &#xff0…

技术前沿 |【BLIP:统一理解和生成的自举多模态模型研究】

BLIP&#xff1a;统一理解和生成的自举多模态模型研究 摘要引言一、BLIP模型概述二、 BLIP模型在多模态任务中的应用三、总结 摘要 本文介绍了BLIP&#xff08;Bootstrapping Language-Image Pre-training&#xff09;模型&#xff0c;一个前沿的多模态模型&#xff0c;通过自…

散列(哈希)及其练习题(基础)

目录 散列 字符出现次数 力扣经典题&#xff1a;两数之和 集合运算 交 并 差 字符串的出现次数 散列 导入&#xff1a; 有N个数和M个数&#xff0c;如何判断M个数中每个数是否在N中出现&#xff1f; 思想&#xff1a;空间换时间 创建hashtable&#xff0c;以N个数本…

图_基础算法

图这种数据结构还有一些比较特殊的算法&#xff0c;比如二分图判断&#xff0c;有环图无环图的判断&#xff0c;拓扑排序&#xff0c;以及最经典的最小生成树&#xff0c;单源最短路径问题&#xff0c;更难的就是类似网络流这样的问题。 先看拓扑排序&#xff08;有环无环&…

【linux性能分析】heaptrack分析内存占用

文章目录 1. Heaptrack是什么2. Heaptrack有哪些功能3. Heaptrack和valgrind massif对比4. Heaptrack安装5. Heaptrack生成追踪文件6. heaptrack_gui进行内存分析7. heaptrack_print也能用于堆分析8. 报错解决9. 补充介绍&#xff1a;heaptrack编译安装 1. Heaptrack是什么 he…

内网穿透--Spp-特殊协议-上线

免责声明:本文仅做技术交流与学习... 目录 spp项目: 一图通解: 1-下载spp 2-服务端执行命令 3-客户端执行命令 4-服务端cs监听&生马 spp项目: GitHub - esrrhs/spp: A simple and powerful proxy 支持的协议&#xff1a;tcp、udp、udp、icmp、http、kcp、quic 支持的…

Java开发者必知的时间处理工具:SimpleDateFormat类详解

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

小红书云原生 Kafka 技术剖析:分层存储与弹性伸缩

面对 Kafka 规模快速增长带来的成本、效率和稳定性挑战时&#xff0c;小红书大数据存储团队采取云原生架构实践&#xff1a;通过引入冷热数据分层存储、容器化技术以及自研的负载均衡服务「Balance Control」&#xff0c;成功实现了集群存储成本的显著降低、分钟级的集群弹性迁…

[图解]SysML和EA建模住宅安全系统-07 to be块定义图

1 00:00:01,970 --> 00:00:05,040 入侵者这里有个∞ 2 00:00:05,530 --> 00:00:07,000 说明它下面已经有子图了 3 00:00:07,010 --> 00:00:08,080 我们看看里面子图 4 00:00:10,200 --> 00:00:17,000 这里&#xff0c;我们看位置 5 00:00:19,030 --> 00:00:…